![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvral2v | Structured version Visualization version GIF version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvral2vw 3239 when possible. (Contributed by NM, 10-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvral2v.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
cbvral2v.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral2v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral2v.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3178 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | cbvralv 3361 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
4 | cbvral2v.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
5 | 4 | cbvralv 3361 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) |
6 | 5 | ralbii 3094 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
7 | 3, 6 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-10 2138 ax-11 2155 ax-12 2172 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clel 2811 df-nfc 2886 df-ral 3063 |
This theorem is referenced by: cbvral3v 3367 |
Copyright terms: Public domain | W3C validator |