MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvral2v Structured version   Visualization version   GIF version

Theorem cbvral2v 3360
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2367. Use the weaker cbvral2vw 3234 when possible. (Contributed by NM, 10-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvral2v.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvral2v.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvral2v (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝑦,𝐵   𝑦,𝑧,𝐵   𝑤,𝐵   𝜑,𝑧   𝜓,𝑦   𝜒,𝑥   𝜒,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvral2v
StepHypRef Expression
1 cbvral2v.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21ralbidv 3173 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜒))
32cbvralv 3356 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑦𝐵 𝜒)
4 cbvral2v.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvralv 3356 . . 3 (∀𝑦𝐵 𝜒 ↔ ∀𝑤𝐵 𝜓)
65ralbii 3089 . 2 (∀𝑧𝐴𝑦𝐵 𝜒 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 275 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2367
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clel 2806  df-nfc 2881  df-ral 3058
This theorem is referenced by:  cbvral3v  3362
  Copyright terms: Public domain W3C validator