| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3269 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3269 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: cbvralsvwOLD 3282 cbvralsvwOLDOLD 3283 cbviin 4986 disjxun 5090 ralxpf 5789 eqfnfv2f 6969 ralrnmptw 7028 dff13f 7192 ofrfval2 7634 fmpox 8002 ovmptss 8026 cbvixp 8841 mptelixpg 8862 boxcutc 8868 xpf1o 9056 indexfi 9250 ixpiunwdom 9482 dfac8clem 9926 acni2 9940 ac6c4 10375 iundom2g 10434 uniimadomf 10439 rabssnn0fi 13893 rlim2 15403 ello1mpt 15428 o1compt 15494 fsum00 15705 iserodd 16747 pcmptdvds 16806 catpropd 17615 invfuc 17884 gsummptnn0fz 19865 gsummoncoe1 22193 gsumply1eq 22194 fiuncmp 23289 elptr2 23459 ptcld 23498 ptclsg 23500 ptcnplem 23506 cnmpt11 23548 cnmpt21 23556 ovoliunlem3 25403 ovoliun 25404 ovoliun2 25405 finiunmbl 25443 volfiniun 25446 iunmbl 25452 voliun 25453 mbfeqalem1 25540 mbfsup 25563 mbfinf 25564 mbflim 25567 itg2split 25648 itgeqa 25713 itgfsum 25726 itgabs 25734 itggt0 25743 limciun 25793 dvlipcn 25897 dvfsumlem4 25934 dvfsum2 25939 itgsubst 25954 coeeq2 26145 ulmss 26304 leibpi 26850 rlimcnp 26873 o1cxp 26883 lgamgulmlem6 26942 fsumdvdscom 27093 lgseisenlem2 27285 disjunsn 32538 bnj110 34825 bnj1529 35037 weiunpo 36439 weiunso 36440 weiunfr 36441 weiunse 36442 poimirlem23 37623 itgabsnc 37669 itggt0cn 37670 totbndbnd 37769 aks6d1c1p5 42085 aks6d1c1rh 42098 aks6d1c7 42157 unitscyglem3 42170 disjinfi 45170 fmptf 45217 caucvgbf 45468 climinff 45592 idlimc 45607 fnlimabslt 45660 limsupref 45666 limsupbnd1f 45667 climbddf 45668 climinf2 45688 limsupubuz 45694 climinfmpt 45696 limsupmnf 45702 limsupre2 45706 limsupmnfuz 45708 limsupre3 45714 limsupre3uz 45717 limsupreuz 45718 climuz 45725 lmbr3 45728 limsupgt 45759 liminfreuz 45784 liminflt 45786 xlimpnfxnegmnf 45795 xlimmnf 45822 xlimpnf 45823 dfxlim2 45829 cncfshift 45855 stoweidlem31 46012 iundjiun 46441 meaiunincf 46464 pimgtmnf2 46695 smfpimcc 46789 smfsup 46795 smfinflem 46798 smfinf 46799 cbvral2 47087 |
| Copyright terms: Public domain | W3C validator |