| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3276 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3276 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: cbvralsvwOLD 3289 cbvralsvwOLDOLD 3290 cbviin 4996 disjxun 5100 ralxpf 5800 eqfnfv2f 6989 ralrnmptw 7048 dff13f 7212 ofrfval2 7654 fmpox 8025 ovmptss 8049 cbvixp 8864 mptelixpg 8885 boxcutc 8891 xpf1o 9080 indexfi 9287 ixpiunwdom 9519 dfac8clem 9961 acni2 9975 ac6c4 10410 iundom2g 10469 uniimadomf 10474 rabssnn0fi 13927 rlim2 15438 ello1mpt 15463 o1compt 15529 fsum00 15740 iserodd 16782 pcmptdvds 16841 catpropd 17646 invfuc 17915 gsummptnn0fz 19892 gsummoncoe1 22171 gsumply1eq 22172 fiuncmp 23267 elptr2 23437 ptcld 23476 ptclsg 23478 ptcnplem 23484 cnmpt11 23526 cnmpt21 23534 ovoliunlem3 25381 ovoliun 25382 ovoliun2 25383 finiunmbl 25421 volfiniun 25424 iunmbl 25430 voliun 25431 mbfeqalem1 25518 mbfsup 25541 mbfinf 25542 mbflim 25545 itg2split 25626 itgeqa 25691 itgfsum 25704 itgabs 25712 itggt0 25721 limciun 25771 dvlipcn 25875 dvfsumlem4 25912 dvfsum2 25917 itgsubst 25932 coeeq2 26123 ulmss 26282 leibpi 26828 rlimcnp 26851 o1cxp 26861 lgamgulmlem6 26920 fsumdvdscom 27071 lgseisenlem2 27263 disjunsn 32496 bnj110 34821 bnj1529 35033 weiunpo 36426 weiunso 36427 weiunfr 36428 weiunse 36429 poimirlem23 37610 itgabsnc 37656 itggt0cn 37657 totbndbnd 37756 aks6d1c1p5 42073 aks6d1c1rh 42086 aks6d1c7 42145 unitscyglem3 42158 disjinfi 45159 fmptf 45206 caucvgbf 45458 climinff 45582 idlimc 45597 fnlimabslt 45650 limsupref 45656 limsupbnd1f 45657 climbddf 45658 climinf2 45678 limsupubuz 45684 climinfmpt 45686 limsupmnf 45692 limsupre2 45696 limsupmnfuz 45698 limsupre3 45704 limsupre3uz 45707 limsupreuz 45708 climuz 45715 lmbr3 45718 limsupgt 45749 liminfreuz 45774 liminflt 45776 xlimpnfxnegmnf 45785 xlimmnf 45812 xlimpnf 45813 dfxlim2 45819 cncfshift 45845 stoweidlem31 46002 iundjiun 46431 meaiunincf 46454 pimgtmnf2 46685 smfpimcc 46779 smfsup 46785 smfinflem 46788 smfinf 46789 cbvral2 47077 |
| Copyright terms: Public domain | W3C validator |