Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvral 3368 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralfw 3358 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 df-ral 3068 |
This theorem is referenced by: cbvralsvw 3391 cbviin 4963 disjxun 5068 ralxpf 5744 eqfnfv2f 6895 ralrnmptw 6952 dff13f 7110 ofrfval2 7532 fmpox 7880 ovmptss 7904 cbvixp 8660 mptelixpg 8681 boxcutc 8687 xpf1o 8875 indexfi 9057 ixpiunwdom 9279 dfac8clem 9719 acni2 9733 ac6c4 10168 iundom2g 10227 uniimadomf 10232 rabssnn0fi 13634 rlim2 15133 ello1mpt 15158 o1compt 15224 fsum00 15438 iserodd 16464 pcmptdvds 16523 catpropd 17335 invfuc 17608 gsummptnn0fz 19502 gsummoncoe1 21385 gsumply1eq 21386 fiuncmp 22463 elptr2 22633 ptcld 22672 ptclsg 22674 ptcnplem 22680 cnmpt11 22722 cnmpt21 22730 ovoliunlem3 24573 ovoliun 24574 ovoliun2 24575 finiunmbl 24613 volfiniun 24616 iunmbl 24622 voliun 24623 mbfeqalem1 24710 mbfsup 24733 mbfinf 24734 mbflim 24737 itg2split 24819 itgeqa 24883 itgfsum 24896 itgabs 24904 itggt0 24913 limciun 24963 dvlipcn 25063 dvfsumlem4 25098 dvfsum2 25103 itgsubst 25118 coeeq2 25308 ulmss 25461 leibpi 25997 rlimcnp 26020 o1cxp 26029 lgamgulmlem6 26088 fsumdvdscom 26239 lgseisenlem2 26429 disjunsn 30834 bnj110 32738 bnj1529 32950 poimirlem23 35727 itgabsnc 35773 itggt0cn 35774 totbndbnd 35874 disjinfi 42620 fmptf 42672 climinff 43042 idlimc 43057 fnlimabslt 43110 limsupref 43116 limsupbnd1f 43117 climbddf 43118 climinf2 43138 limsupubuz 43144 climinfmpt 43146 limsupmnf 43152 limsupre2 43156 limsupmnfuz 43158 limsupre3 43164 limsupre3uz 43167 limsupreuz 43168 climuz 43175 lmbr3 43178 limsupgt 43209 liminfreuz 43234 liminflt 43236 xlimpnfxnegmnf 43245 xlimmnf 43272 xlimpnf 43273 dfxlim2 43279 cncfshift 43305 stoweidlem31 43462 iundjiun 43888 meaiunincf 43911 pimgtmnf2 44138 smfpimcc 44228 smfsup 44234 smfinflem 44237 smfinf 44238 cbvral2 44482 |
Copyright terms: Public domain | W3C validator |