| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3280 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3280 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2804 df-nfc 2879 df-ral 3046 |
| This theorem is referenced by: cbvralsvwOLD 3294 cbvralsvwOLDOLD 3295 cbviin 5004 disjxun 5108 ralxpf 5813 eqfnfv2f 7010 ralrnmptw 7069 dff13f 7233 ofrfval2 7677 fmpox 8049 ovmptss 8075 cbvixp 8890 mptelixpg 8911 boxcutc 8917 xpf1o 9109 indexfi 9318 ixpiunwdom 9550 dfac8clem 9992 acni2 10006 ac6c4 10441 iundom2g 10500 uniimadomf 10505 rabssnn0fi 13958 rlim2 15469 ello1mpt 15494 o1compt 15560 fsum00 15771 iserodd 16813 pcmptdvds 16872 catpropd 17677 invfuc 17946 gsummptnn0fz 19923 gsummoncoe1 22202 gsumply1eq 22203 fiuncmp 23298 elptr2 23468 ptcld 23507 ptclsg 23509 ptcnplem 23515 cnmpt11 23557 cnmpt21 23565 ovoliunlem3 25412 ovoliun 25413 ovoliun2 25414 finiunmbl 25452 volfiniun 25455 iunmbl 25461 voliun 25462 mbfeqalem1 25549 mbfsup 25572 mbfinf 25573 mbflim 25576 itg2split 25657 itgeqa 25722 itgfsum 25735 itgabs 25743 itggt0 25752 limciun 25802 dvlipcn 25906 dvfsumlem4 25943 dvfsum2 25948 itgsubst 25963 coeeq2 26154 ulmss 26313 leibpi 26859 rlimcnp 26882 o1cxp 26892 lgamgulmlem6 26951 fsumdvdscom 27102 lgseisenlem2 27294 disjunsn 32530 bnj110 34855 bnj1529 35067 weiunpo 36460 weiunso 36461 weiunfr 36462 weiunse 36463 poimirlem23 37644 itgabsnc 37690 itggt0cn 37691 totbndbnd 37790 aks6d1c1p5 42107 aks6d1c1rh 42120 aks6d1c7 42179 unitscyglem3 42192 disjinfi 45193 fmptf 45240 caucvgbf 45492 climinff 45616 idlimc 45631 fnlimabslt 45684 limsupref 45690 limsupbnd1f 45691 climbddf 45692 climinf2 45712 limsupubuz 45718 climinfmpt 45720 limsupmnf 45726 limsupre2 45730 limsupmnfuz 45732 limsupre3 45738 limsupre3uz 45741 limsupreuz 45742 climuz 45749 lmbr3 45752 limsupgt 45783 liminfreuz 45808 liminflt 45810 xlimpnfxnegmnf 45819 xlimmnf 45846 xlimpnf 45847 dfxlim2 45853 cncfshift 45879 stoweidlem31 46036 iundjiun 46465 meaiunincf 46488 pimgtmnf2 46719 smfpimcc 46813 smfsup 46819 smfinflem 46822 smfinf 46823 cbvral2 47108 |
| Copyright terms: Public domain | W3C validator |