![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3310 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralfw 3310 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-clel 2819 df-nfc 2895 df-ral 3068 |
This theorem is referenced by: cbvralsvwOLD 3325 cbvralsvwOLDOLD 3326 cbviin 5060 disjxun 5164 ralxpf 5871 eqfnfv2f 7068 ralrnmptw 7128 dff13f 7293 ofrfval2 7735 fmpox 8108 ovmptss 8134 cbvixp 8972 mptelixpg 8993 boxcutc 8999 xpf1o 9205 indexfi 9430 ixpiunwdom 9659 dfac8clem 10101 acni2 10115 ac6c4 10550 iundom2g 10609 uniimadomf 10614 rabssnn0fi 14037 rlim2 15542 ello1mpt 15567 o1compt 15633 fsum00 15846 iserodd 16882 pcmptdvds 16941 catpropd 17767 invfuc 18044 gsummptnn0fz 20028 gsummoncoe1 22333 gsumply1eq 22334 fiuncmp 23433 elptr2 23603 ptcld 23642 ptclsg 23644 ptcnplem 23650 cnmpt11 23692 cnmpt21 23700 ovoliunlem3 25558 ovoliun 25559 ovoliun2 25560 finiunmbl 25598 volfiniun 25601 iunmbl 25607 voliun 25608 mbfeqalem1 25695 mbfsup 25718 mbfinf 25719 mbflim 25722 itg2split 25804 itgeqa 25869 itgfsum 25882 itgabs 25890 itggt0 25899 limciun 25949 dvlipcn 26053 dvfsumlem4 26090 dvfsum2 26095 itgsubst 26110 coeeq2 26301 ulmss 26458 leibpi 27003 rlimcnp 27026 o1cxp 27036 lgamgulmlem6 27095 fsumdvdscom 27246 lgseisenlem2 27438 disjunsn 32616 bnj110 34834 bnj1529 35046 weiunpo 36431 weiunso 36432 weiunfr 36433 weiunse 36434 poimirlem23 37603 itgabsnc 37649 itggt0cn 37650 totbndbnd 37749 aks6d1c1p5 42069 aks6d1c1rh 42082 aks6d1c7 42141 unitscyglem3 42154 disjinfi 45099 fmptf 45147 caucvgbf 45405 climinff 45532 idlimc 45547 fnlimabslt 45600 limsupref 45606 limsupbnd1f 45607 climbddf 45608 climinf2 45628 limsupubuz 45634 climinfmpt 45636 limsupmnf 45642 limsupre2 45646 limsupmnfuz 45648 limsupre3 45654 limsupre3uz 45657 limsupreuz 45658 climuz 45665 lmbr3 45668 limsupgt 45699 liminfreuz 45724 liminflt 45726 xlimpnfxnegmnf 45735 xlimmnf 45762 xlimpnf 45763 dfxlim2 45769 cncfshift 45795 stoweidlem31 45952 iundjiun 46381 meaiunincf 46404 pimgtmnf2 46635 smfpimcc 46729 smfsup 46735 smfinflem 46738 smfinf 46739 cbvral2 47018 |
Copyright terms: Public domain | W3C validator |