![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3293 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2363. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralfw 3293 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1777 ∀wral 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-11 2146 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-nf 1778 df-clel 2802 df-nfc 2877 df-ral 3054 |
This theorem is referenced by: cbvralsvw 3306 cbvralsvwOLD 3308 cbviin 5030 disjxun 5136 ralxpf 5836 eqfnfv2f 7026 ralrnmptw 7085 dff13f 7247 ofrfval2 7684 fmpox 8046 ovmptss 8073 cbvixp 8903 mptelixpg 8924 boxcutc 8930 xpf1o 9134 indexfi 9355 ixpiunwdom 9580 dfac8clem 10022 acni2 10036 ac6c4 10471 iundom2g 10530 uniimadomf 10535 rabssnn0fi 13947 rlim2 15436 ello1mpt 15461 o1compt 15527 fsum00 15740 iserodd 16766 pcmptdvds 16825 catpropd 17651 invfuc 17928 gsummptnn0fz 19895 gsummoncoe1 22148 gsumply1eq 22149 fiuncmp 23229 elptr2 23399 ptcld 23438 ptclsg 23440 ptcnplem 23446 cnmpt11 23488 cnmpt21 23496 ovoliunlem3 25354 ovoliun 25355 ovoliun2 25356 finiunmbl 25394 volfiniun 25397 iunmbl 25403 voliun 25404 mbfeqalem1 25491 mbfsup 25514 mbfinf 25515 mbflim 25518 itg2split 25600 itgeqa 25664 itgfsum 25677 itgabs 25685 itggt0 25694 limciun 25744 dvlipcn 25848 dvfsumlem4 25885 dvfsum2 25890 itgsubst 25905 coeeq2 26095 ulmss 26249 leibpi 26789 rlimcnp 26812 o1cxp 26822 lgamgulmlem6 26881 fsumdvdscom 27032 lgseisenlem2 27224 disjunsn 32260 bnj110 34324 bnj1529 34536 poimirlem23 36967 itgabsnc 37013 itggt0cn 37014 totbndbnd 37113 disjinfi 44342 fmptf 44393 caucvgbf 44651 climinff 44778 idlimc 44793 fnlimabslt 44846 limsupref 44852 limsupbnd1f 44853 climbddf 44854 climinf2 44874 limsupubuz 44880 climinfmpt 44882 limsupmnf 44888 limsupre2 44892 limsupmnfuz 44894 limsupre3 44900 limsupre3uz 44903 limsupreuz 44904 climuz 44911 lmbr3 44914 limsupgt 44945 liminfreuz 44970 liminflt 44972 xlimpnfxnegmnf 44981 xlimmnf 45008 xlimpnf 45009 dfxlim2 45015 cncfshift 45041 stoweidlem31 45198 iundjiun 45627 meaiunincf 45650 pimgtmnf2 45881 smfpimcc 45975 smfsup 45981 smfinflem 45984 smfinf 45985 cbvral2 46262 |
Copyright terms: Public domain | W3C validator |