| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3284 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3284 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2809 df-nfc 2885 df-ral 3052 |
| This theorem is referenced by: cbvralsvwOLD 3298 cbvralsvwOLDOLD 3299 cbviin 5013 disjxun 5117 ralxpf 5826 eqfnfv2f 7025 ralrnmptw 7084 dff13f 7248 ofrfval2 7692 fmpox 8066 ovmptss 8092 cbvixp 8928 mptelixpg 8949 boxcutc 8955 xpf1o 9153 indexfi 9372 ixpiunwdom 9604 dfac8clem 10046 acni2 10060 ac6c4 10495 iundom2g 10554 uniimadomf 10559 rabssnn0fi 14004 rlim2 15512 ello1mpt 15537 o1compt 15603 fsum00 15814 iserodd 16855 pcmptdvds 16914 catpropd 17721 invfuc 17990 gsummptnn0fz 19967 gsummoncoe1 22246 gsumply1eq 22247 fiuncmp 23342 elptr2 23512 ptcld 23551 ptclsg 23553 ptcnplem 23559 cnmpt11 23601 cnmpt21 23609 ovoliunlem3 25457 ovoliun 25458 ovoliun2 25459 finiunmbl 25497 volfiniun 25500 iunmbl 25506 voliun 25507 mbfeqalem1 25594 mbfsup 25617 mbfinf 25618 mbflim 25621 itg2split 25702 itgeqa 25767 itgfsum 25780 itgabs 25788 itggt0 25797 limciun 25847 dvlipcn 25951 dvfsumlem4 25988 dvfsum2 25993 itgsubst 26008 coeeq2 26199 ulmss 26358 leibpi 26904 rlimcnp 26927 o1cxp 26937 lgamgulmlem6 26996 fsumdvdscom 27147 lgseisenlem2 27339 disjunsn 32575 bnj110 34889 bnj1529 35101 weiunpo 36483 weiunso 36484 weiunfr 36485 weiunse 36486 poimirlem23 37667 itgabsnc 37713 itggt0cn 37714 totbndbnd 37813 aks6d1c1p5 42125 aks6d1c1rh 42138 aks6d1c7 42197 unitscyglem3 42210 disjinfi 45216 fmptf 45263 caucvgbf 45516 climinff 45640 idlimc 45655 fnlimabslt 45708 limsupref 45714 limsupbnd1f 45715 climbddf 45716 climinf2 45736 limsupubuz 45742 climinfmpt 45744 limsupmnf 45750 limsupre2 45754 limsupmnfuz 45756 limsupre3 45762 limsupre3uz 45765 limsupreuz 45766 climuz 45773 lmbr3 45776 limsupgt 45807 liminfreuz 45832 liminflt 45834 xlimpnfxnegmnf 45843 xlimmnf 45870 xlimpnf 45871 dfxlim2 45877 cncfshift 45903 stoweidlem31 46060 iundjiun 46489 meaiunincf 46512 pimgtmnf2 46743 smfpimcc 46837 smfsup 46843 smfinflem 46846 smfinf 46847 cbvral2 47132 |
| Copyright terms: Public domain | W3C validator |