| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3278 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3278 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: cbvralsvwOLD 3292 cbvralsvwOLDOLD 3293 cbviin 5001 disjxun 5105 ralxpf 5810 eqfnfv2f 7007 ralrnmptw 7066 dff13f 7230 ofrfval2 7674 fmpox 8046 ovmptss 8072 cbvixp 8887 mptelixpg 8908 boxcutc 8914 xpf1o 9103 indexfi 9311 ixpiunwdom 9543 dfac8clem 9985 acni2 9999 ac6c4 10434 iundom2g 10493 uniimadomf 10498 rabssnn0fi 13951 rlim2 15462 ello1mpt 15487 o1compt 15553 fsum00 15764 iserodd 16806 pcmptdvds 16865 catpropd 17670 invfuc 17939 gsummptnn0fz 19916 gsummoncoe1 22195 gsumply1eq 22196 fiuncmp 23291 elptr2 23461 ptcld 23500 ptclsg 23502 ptcnplem 23508 cnmpt11 23550 cnmpt21 23558 ovoliunlem3 25405 ovoliun 25406 ovoliun2 25407 finiunmbl 25445 volfiniun 25448 iunmbl 25454 voliun 25455 mbfeqalem1 25542 mbfsup 25565 mbfinf 25566 mbflim 25569 itg2split 25650 itgeqa 25715 itgfsum 25728 itgabs 25736 itggt0 25745 limciun 25795 dvlipcn 25899 dvfsumlem4 25936 dvfsum2 25941 itgsubst 25956 coeeq2 26147 ulmss 26306 leibpi 26852 rlimcnp 26875 o1cxp 26885 lgamgulmlem6 26944 fsumdvdscom 27095 lgseisenlem2 27287 disjunsn 32523 bnj110 34848 bnj1529 35060 weiunpo 36453 weiunso 36454 weiunfr 36455 weiunse 36456 poimirlem23 37637 itgabsnc 37683 itggt0cn 37684 totbndbnd 37783 aks6d1c1p5 42100 aks6d1c1rh 42113 aks6d1c7 42172 unitscyglem3 42185 disjinfi 45186 fmptf 45233 caucvgbf 45485 climinff 45609 idlimc 45624 fnlimabslt 45677 limsupref 45683 limsupbnd1f 45684 climbddf 45685 climinf2 45705 limsupubuz 45711 climinfmpt 45713 limsupmnf 45719 limsupre2 45723 limsupmnfuz 45725 limsupre3 45731 limsupre3uz 45734 limsupreuz 45735 climuz 45742 lmbr3 45745 limsupgt 45776 liminfreuz 45801 liminflt 45803 xlimpnfxnegmnf 45812 xlimmnf 45839 xlimpnf 45840 dfxlim2 45846 cncfshift 45872 stoweidlem31 46029 iundjiun 46458 meaiunincf 46481 pimgtmnf2 46712 smfpimcc 46806 smfsup 46812 smfinflem 46815 smfinf 46816 cbvral2 47104 |
| Copyright terms: Public domain | W3C validator |