| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3272 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3272 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 |
| This theorem is referenced by: cbvralsvwOLD 3285 cbvralsvwOLDOLD 3286 cbviin 4984 disjxun 5087 ralxpf 5785 eqfnfv2f 6968 ralrnmptw 7027 dff13f 7189 ofrfval2 7631 fmpox 7999 ovmptss 8023 cbvixp 8838 mptelixpg 8859 boxcutc 8865 xpf1o 9052 indexfi 9244 ixpiunwdom 9476 dfac8clem 9923 acni2 9937 ac6c4 10372 iundom2g 10431 uniimadomf 10436 rabssnn0fi 13893 rlim2 15403 ello1mpt 15428 o1compt 15494 fsum00 15705 iserodd 16747 pcmptdvds 16806 catpropd 17615 invfuc 17884 gsummptnn0fz 19898 gsummoncoe1 22223 gsumply1eq 22224 fiuncmp 23319 elptr2 23489 ptcld 23528 ptclsg 23530 ptcnplem 23536 cnmpt11 23578 cnmpt21 23586 ovoliunlem3 25432 ovoliun 25433 ovoliun2 25434 finiunmbl 25472 volfiniun 25475 iunmbl 25481 voliun 25482 mbfeqalem1 25569 mbfsup 25592 mbfinf 25593 mbflim 25596 itg2split 25677 itgeqa 25742 itgfsum 25755 itgabs 25763 itggt0 25772 limciun 25822 dvlipcn 25926 dvfsumlem4 25963 dvfsum2 25968 itgsubst 25983 coeeq2 26174 ulmss 26333 leibpi 26879 rlimcnp 26902 o1cxp 26912 lgamgulmlem6 26971 fsumdvdscom 27122 lgseisenlem2 27314 disjunsn 32574 bnj110 34870 bnj1529 35082 weiunpo 36507 weiunso 36508 weiunfr 36509 weiunse 36510 poimirlem23 37691 itgabsnc 37737 itggt0cn 37738 totbndbnd 37837 aks6d1c1p5 42153 aks6d1c1rh 42166 aks6d1c7 42225 unitscyglem3 42238 disjinfi 45237 fmptf 45284 caucvgbf 45535 climinff 45659 idlimc 45674 fnlimabslt 45725 limsupref 45731 limsupbnd1f 45732 climbddf 45733 climinf2 45753 limsupubuz 45759 climinfmpt 45761 limsupmnf 45767 limsupre2 45771 limsupmnfuz 45773 limsupre3 45779 limsupre3uz 45782 limsupreuz 45783 climuz 45790 lmbr3 45793 limsupgt 45824 liminfreuz 45849 liminflt 45851 xlimpnfxnegmnf 45860 xlimmnf 45887 xlimpnf 45888 dfxlim2 45894 cncfshift 45920 stoweidlem31 46077 iundjiun 46506 meaiunincf 46529 pimgtmnf2 46760 smfpimcc 46854 smfsup 46860 smfinflem 46863 smfinf 46864 cbvral2 47142 |
| Copyright terms: Public domain | W3C validator |