Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvral 3380 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralfw 3369 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-11 2155 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-clel 2817 df-nfc 2890 df-ral 3070 |
This theorem is referenced by: cbvralsvw 3403 cbviin 4968 disjxun 5073 ralxpf 5758 eqfnfv2f 6922 ralrnmptw 6979 dff13f 7138 ofrfval2 7563 fmpox 7916 ovmptss 7942 cbvixp 8711 mptelixpg 8732 boxcutc 8738 xpf1o 8935 indexfi 9136 ixpiunwdom 9358 dfac8clem 9797 acni2 9811 ac6c4 10246 iundom2g 10305 uniimadomf 10310 rabssnn0fi 13715 rlim2 15214 ello1mpt 15239 o1compt 15305 fsum00 15519 iserodd 16545 pcmptdvds 16604 catpropd 17427 invfuc 17701 gsummptnn0fz 19596 gsummoncoe1 21484 gsumply1eq 21485 fiuncmp 22564 elptr2 22734 ptcld 22773 ptclsg 22775 ptcnplem 22781 cnmpt11 22823 cnmpt21 22831 ovoliunlem3 24677 ovoliun 24678 ovoliun2 24679 finiunmbl 24717 volfiniun 24720 iunmbl 24726 voliun 24727 mbfeqalem1 24814 mbfsup 24837 mbfinf 24838 mbflim 24841 itg2split 24923 itgeqa 24987 itgfsum 25000 itgabs 25008 itggt0 25017 limciun 25067 dvlipcn 25167 dvfsumlem4 25202 dvfsum2 25207 itgsubst 25222 coeeq2 25412 ulmss 25565 leibpi 26101 rlimcnp 26124 o1cxp 26133 lgamgulmlem6 26192 fsumdvdscom 26343 lgseisenlem2 26533 disjunsn 30942 bnj110 32847 bnj1529 33059 poimirlem23 35809 itgabsnc 35855 itggt0cn 35856 totbndbnd 35956 disjinfi 42738 fmptf 42790 climinff 43159 idlimc 43174 fnlimabslt 43227 limsupref 43233 limsupbnd1f 43234 climbddf 43235 climinf2 43255 limsupubuz 43261 climinfmpt 43263 limsupmnf 43269 limsupre2 43273 limsupmnfuz 43275 limsupre3 43281 limsupre3uz 43284 limsupreuz 43285 climuz 43292 lmbr3 43295 limsupgt 43326 liminfreuz 43351 liminflt 43353 xlimpnfxnegmnf 43362 xlimmnf 43389 xlimpnf 43390 dfxlim2 43396 cncfshift 43422 stoweidlem31 43579 iundjiun 44005 meaiunincf 44028 pimgtmnf2 44259 smfpimcc 44352 smfsup 44358 smfinflem 44361 smfinf 44362 cbvral2 44606 |
Copyright terms: Public domain | W3C validator |