![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3301 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralfw 3301 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1779 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-11 2154 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-nf 1780 df-clel 2813 df-nfc 2889 df-ral 3059 |
This theorem is referenced by: cbvralsvwOLD 3316 cbvralsvwOLDOLD 3317 cbviin 5041 disjxun 5145 ralxpf 5859 eqfnfv2f 7054 ralrnmptw 7113 dff13f 7275 ofrfval2 7717 fmpox 8090 ovmptss 8116 cbvixp 8952 mptelixpg 8973 boxcutc 8979 xpf1o 9177 indexfi 9397 ixpiunwdom 9627 dfac8clem 10069 acni2 10083 ac6c4 10518 iundom2g 10577 uniimadomf 10582 rabssnn0fi 14023 rlim2 15528 ello1mpt 15553 o1compt 15619 fsum00 15830 iserodd 16868 pcmptdvds 16927 catpropd 17753 invfuc 18030 gsummptnn0fz 20018 gsummoncoe1 22327 gsumply1eq 22328 fiuncmp 23427 elptr2 23597 ptcld 23636 ptclsg 23638 ptcnplem 23644 cnmpt11 23686 cnmpt21 23694 ovoliunlem3 25552 ovoliun 25553 ovoliun2 25554 finiunmbl 25592 volfiniun 25595 iunmbl 25601 voliun 25602 mbfeqalem1 25689 mbfsup 25712 mbfinf 25713 mbflim 25716 itg2split 25798 itgeqa 25863 itgfsum 25876 itgabs 25884 itggt0 25893 limciun 25943 dvlipcn 26047 dvfsumlem4 26084 dvfsum2 26089 itgsubst 26104 coeeq2 26295 ulmss 26454 leibpi 26999 rlimcnp 27022 o1cxp 27032 lgamgulmlem6 27091 fsumdvdscom 27242 lgseisenlem2 27434 disjunsn 32613 bnj110 34850 bnj1529 35062 weiunpo 36447 weiunso 36448 weiunfr 36449 weiunse 36450 poimirlem23 37629 itgabsnc 37675 itggt0cn 37676 totbndbnd 37775 aks6d1c1p5 42093 aks6d1c1rh 42106 aks6d1c7 42165 unitscyglem3 42178 disjinfi 45134 fmptf 45182 caucvgbf 45439 climinff 45566 idlimc 45581 fnlimabslt 45634 limsupref 45640 limsupbnd1f 45641 climbddf 45642 climinf2 45662 limsupubuz 45668 climinfmpt 45670 limsupmnf 45676 limsupre2 45680 limsupmnfuz 45682 limsupre3 45688 limsupre3uz 45691 limsupreuz 45692 climuz 45699 lmbr3 45702 limsupgt 45733 liminfreuz 45758 liminflt 45760 xlimpnfxnegmnf 45769 xlimmnf 45796 xlimpnf 45797 dfxlim2 45803 cncfshift 45829 stoweidlem31 45986 iundjiun 46415 meaiunincf 46438 pimgtmnf2 46669 smfpimcc 46763 smfsup 46769 smfinflem 46772 smfinf 46773 cbvral2 47052 |
Copyright terms: Public domain | W3C validator |