![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3301 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralfw 3301 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1785 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-clel 2810 df-nfc 2885 df-ral 3062 |
This theorem is referenced by: cbvralsvw 3314 cbvralsvwOLD 3316 cbviin 5039 disjxun 5145 ralxpf 5844 eqfnfv2f 7033 ralrnmptw 7092 dff13f 7251 ofrfval2 7687 fmpox 8049 ovmptss 8075 cbvixp 8904 mptelixpg 8925 boxcutc 8931 xpf1o 9135 indexfi 9356 ixpiunwdom 9581 dfac8clem 10023 acni2 10037 ac6c4 10472 iundom2g 10531 uniimadomf 10536 rabssnn0fi 13947 rlim2 15436 ello1mpt 15461 o1compt 15527 fsum00 15740 iserodd 16764 pcmptdvds 16823 catpropd 17649 invfuc 17923 gsummptnn0fz 19848 gsummoncoe1 21819 gsumply1eq 21820 fiuncmp 22899 elptr2 23069 ptcld 23108 ptclsg 23110 ptcnplem 23116 cnmpt11 23158 cnmpt21 23166 ovoliunlem3 25012 ovoliun 25013 ovoliun2 25014 finiunmbl 25052 volfiniun 25055 iunmbl 25061 voliun 25062 mbfeqalem1 25149 mbfsup 25172 mbfinf 25173 mbflim 25176 itg2split 25258 itgeqa 25322 itgfsum 25335 itgabs 25343 itggt0 25352 limciun 25402 dvlipcn 25502 dvfsumlem4 25537 dvfsum2 25542 itgsubst 25557 coeeq2 25747 ulmss 25900 leibpi 26436 rlimcnp 26459 o1cxp 26468 lgamgulmlem6 26527 fsumdvdscom 26678 lgseisenlem2 26868 disjunsn 31812 bnj110 33857 bnj1529 34069 poimirlem23 36499 itgabsnc 36545 itggt0cn 36546 totbndbnd 36645 disjinfi 43876 fmptf 43927 caucvgbf 44186 climinff 44313 idlimc 44328 fnlimabslt 44381 limsupref 44387 limsupbnd1f 44388 climbddf 44389 climinf2 44409 limsupubuz 44415 climinfmpt 44417 limsupmnf 44423 limsupre2 44427 limsupmnfuz 44429 limsupre3 44435 limsupre3uz 44438 limsupreuz 44439 climuz 44446 lmbr3 44449 limsupgt 44480 liminfreuz 44505 liminflt 44507 xlimpnfxnegmnf 44516 xlimmnf 44543 xlimpnf 44544 dfxlim2 44550 cncfshift 44576 stoweidlem31 44733 iundjiun 45162 meaiunincf 45185 pimgtmnf2 45416 smfpimcc 45510 smfsup 45516 smfinflem 45519 smfinf 45520 cbvral2 45797 |
Copyright terms: Public domain | W3C validator |