| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralfw 3276 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralfw 3276 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: cbvralsvwOLD 3289 cbvralsvwOLDOLD 3290 cbviin 4996 disjxun 5100 ralxpf 5800 eqfnfv2f 6989 ralrnmptw 7048 dff13f 7212 ofrfval2 7654 fmpox 8025 ovmptss 8049 cbvixp 8864 mptelixpg 8885 boxcutc 8891 xpf1o 9080 indexfi 9287 ixpiunwdom 9519 dfac8clem 9961 acni2 9975 ac6c4 10410 iundom2g 10469 uniimadomf 10474 rabssnn0fi 13927 rlim2 15438 ello1mpt 15463 o1compt 15529 fsum00 15740 iserodd 16782 pcmptdvds 16841 catpropd 17650 invfuc 17919 gsummptnn0fz 19900 gsummoncoe1 22228 gsumply1eq 22229 fiuncmp 23324 elptr2 23494 ptcld 23533 ptclsg 23535 ptcnplem 23541 cnmpt11 23583 cnmpt21 23591 ovoliunlem3 25438 ovoliun 25439 ovoliun2 25440 finiunmbl 25478 volfiniun 25481 iunmbl 25487 voliun 25488 mbfeqalem1 25575 mbfsup 25598 mbfinf 25599 mbflim 25602 itg2split 25683 itgeqa 25748 itgfsum 25761 itgabs 25769 itggt0 25778 limciun 25828 dvlipcn 25932 dvfsumlem4 25969 dvfsum2 25974 itgsubst 25989 coeeq2 26180 ulmss 26339 leibpi 26885 rlimcnp 26908 o1cxp 26918 lgamgulmlem6 26977 fsumdvdscom 27128 lgseisenlem2 27320 disjunsn 32573 bnj110 34841 bnj1529 35053 weiunpo 36446 weiunso 36447 weiunfr 36448 weiunse 36449 poimirlem23 37630 itgabsnc 37676 itggt0cn 37677 totbndbnd 37776 aks6d1c1p5 42093 aks6d1c1rh 42106 aks6d1c7 42165 unitscyglem3 42178 disjinfi 45179 fmptf 45226 caucvgbf 45478 climinff 45602 idlimc 45617 fnlimabslt 45670 limsupref 45676 limsupbnd1f 45677 climbddf 45678 climinf2 45698 limsupubuz 45704 climinfmpt 45706 limsupmnf 45712 limsupre2 45716 limsupmnfuz 45718 limsupre3 45724 limsupre3uz 45727 limsupreuz 45728 climuz 45735 lmbr3 45738 limsupgt 45769 liminfreuz 45794 liminflt 45796 xlimpnfxnegmnf 45805 xlimmnf 45832 xlimpnf 45833 dfxlim2 45839 cncfshift 45865 stoweidlem31 46022 iundjiun 46451 meaiunincf 46474 pimgtmnf2 46705 smfpimcc 46799 smfsup 46805 smfinflem 46808 smfinf 46809 cbvral2 47097 |
| Copyright terms: Public domain | W3C validator |