| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrex2 | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvrex2v 3353. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| cbvral2.1 | ⊢ Ⅎ𝑧𝜑 |
| cbvral2.2 | ⊢ Ⅎ𝑥𝜒 |
| cbvral2.3 | ⊢ Ⅎ𝑤𝜒 |
| cbvral2.4 | ⊢ Ⅎ𝑦𝜓 |
| cbvral2.5 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
| cbvral2.6 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrex2 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑧𝐵 | |
| 2 | cbvral2.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 1, 2 | nfrexw 3297 | . . 3 ⊢ Ⅎ𝑧∃𝑦 ∈ 𝐵 𝜑 |
| 4 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | cbvral2.2 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nfrexw 3297 | . . 3 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐵 𝜒 |
| 7 | cbvral2.5 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 8 | 7 | rexbidv 3165 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 9 | 3, 6, 8 | cbvrexw 3291 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 10 | cbvral2.3 | . . . 4 ⊢ Ⅎ𝑤𝜒 | |
| 11 | cbvral2.4 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 12 | cbvral2.6 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 13 | 10, 11, 12 | cbvrexw 3291 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑤 ∈ 𝐵 𝜓) |
| 14 | 13 | rexbii 3084 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| 15 | 9, 14 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |