MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfral Structured version   Visualization version   GIF version

Theorem nfral 3139
Description: Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfralw 3138 when possible. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfral.1 𝑥𝐴
nfral.2 𝑥𝜑
Assertion
Ref Expression
nfral 𝑥𝑦𝐴 𝜑

Proof of Theorem nfral
StepHypRef Expression
1 nftru 1811 . . 3 𝑦
2 nfral.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfral.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrald 3137 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1549 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1543  wnf 1790  wnfc 2879  wral 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-13 2372  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058
This theorem is referenced by:  nfra2  3142  nfiing  4914  opreu2reuALT  30399  eliuniincex  42197  cbvral2  44127
  Copyright terms: Public domain W3C validator