| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfral | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker nfralw 3295 when possible. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfral.1 | ⊢ Ⅎ𝑥𝐴 |
| nfral.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfral | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1803 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfral.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfral.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrald 3356 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1540 Ⅎwnf 1782 Ⅎwnfc 2882 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 |
| This theorem is referenced by: nfra2 3360 nfiing 5008 opreu2reuALT 32443 eliuniincex 45059 cbvral2 47061 |
| Copyright terms: Public domain | W3C validator |