MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfral Structured version   Visualization version   GIF version

Theorem nfral 3358
Description: Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker nfralw 3295 when possible. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfral.1 𝑥𝐴
nfral.2 𝑥𝜑
Assertion
Ref Expression
nfral 𝑥𝑦𝐴 𝜑

Proof of Theorem nfral
StepHypRef Expression
1 nftru 1803 . . 3 𝑦
2 nfral.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfral.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrald 3356 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1546 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1782  wnfc 2882  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051
This theorem is referenced by:  nfra2  3360  nfiing  5008  opreu2reuALT  32443  eliuniincex  45059  cbvral2  47061
  Copyright terms: Public domain W3C validator