Proof of Theorem 2rexrsb
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rexrsb 47117 | . . . 4
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ∃𝑤 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) | 
| 2 | 1 | rexbii 3093 | . . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) | 
| 3 |  | rexcom 3289 | . . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑤 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑤 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) | 
| 4 | 2, 3 | bitri 275 | . 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑤 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) | 
| 5 |  | rexrsb 47117 | . . . . 5
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑))) | 
| 6 |  | impexp 450 | . . . . . . . . 9
⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | 
| 7 | 6 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦 ∈ 𝐵 (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | 
| 8 |  | r19.21v 3179 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑))) | 
| 9 | 7, 8 | bitr2i 276 | . . . . . . 7
⊢ ((𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 10 | 9 | ralbii 3092 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 11 | 10 | rexbii 3093 | . . . . 5
⊢
(∃𝑧 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) ↔ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 12 | 5, 11 | bitri 275 | . . . 4
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 13 | 12 | rexbii 3093 | . . 3
⊢
(∃𝑤 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 14 |  | rexcom 3289 | . . 3
⊢
(∃𝑤 ∈
𝐵 ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 15 | 13, 14 | bitri 275 | . 2
⊢
(∃𝑤 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 16 | 4, 15 | bitri 275 | 1
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |