![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2374. See nfrex 3372 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1800 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdw 3307 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1543 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1537 Ⅎwnf 1779 Ⅎwnfc 2887 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-10 2138 ax-11 2154 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 |
This theorem is referenced by: nfiun 5027 rexopabb 5537 nffr 5661 abrexex2g 7987 indexfi 9397 nfoi 9551 ixpiunwdom 9627 hsmexlem2 10464 iunfo 10576 iundom2g 10577 reclem2pr 11085 nfwrd 14577 nfsum1 15722 nfsum 15723 nfcprod1 15940 nfcprod 15941 ptclsg 23638 iunmbl2 25605 mbfsup 25712 limciun 25943 opreu2reuALT 32504 iundisjf 32608 xrofsup 32777 locfinreflem 33800 esum2d 34073 bnj873 34916 bnj1014 34953 bnj1123 34978 bnj1307 35015 bnj1445 35036 bnj1446 35037 bnj1467 35046 bnj1463 35047 poimirlem24 37630 poimirlem26 37632 poimirlem27 37633 indexa 37719 filbcmb 37726 sdclem2 37728 sdclem1 37729 fdc1 37732 sbcrexgOLD 42772 rexrabdioph 42781 rexfrabdioph 42782 elnn0rabdioph 42790 dvdsrabdioph 42797 oaun3lem1 43363 modelaxreplem3 44944 modelaxrep 44945 disjrnmpt2 45130 rnmptbdlem 45199 infrnmptle 45372 infxrunb3rnmpt 45377 climinff 45566 xlimmnfv 45789 xlimpnfv 45793 cncfshift 45829 stoweidlem53 46008 stoweidlem57 46012 fourierdlem48 46109 fourierdlem73 46134 sge0gerp 46350 sge0resplit 46361 sge0reuz 46402 meaiuninc3v 46439 smfsup 46769 smfsupmpt 46770 smfinf 46773 smfinfmpt 46774 cbvrex2 47053 2reu8i 47062 mogoldbb 47709 |
Copyright terms: Public domain | W3C validator |