![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2380. See nfrex 3383 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1802 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdw 3316 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1544 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1781 Ⅎwnfc 2893 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 |
This theorem is referenced by: nfiun 5046 rexopabb 5547 nffr 5673 abrexex2g 8005 indexfi 9430 nfoi 9583 ixpiunwdom 9659 hsmexlem2 10496 iunfo 10608 iundom2g 10609 reclem2pr 11117 nfwrd 14591 nfsum1 15738 nfsum 15739 nfcprod1 15956 nfcprod 15957 ptclsg 23644 iunmbl2 25611 mbfsup 25718 limciun 25949 opreu2reuALT 32505 iundisjf 32611 xrofsup 32774 locfinreflem 33786 esum2d 34057 bnj873 34900 bnj1014 34937 bnj1123 34962 bnj1307 34999 bnj1445 35020 bnj1446 35021 bnj1467 35030 bnj1463 35031 poimirlem24 37604 poimirlem26 37606 poimirlem27 37607 indexa 37693 filbcmb 37700 sdclem2 37702 sdclem1 37703 fdc1 37706 sbcrexgOLD 42741 rexrabdioph 42750 rexfrabdioph 42751 elnn0rabdioph 42759 dvdsrabdioph 42766 oaun3lem1 43336 disjrnmpt2 45095 rnmptbdlem 45164 infrnmptle 45338 infxrunb3rnmpt 45343 climinff 45532 xlimmnfv 45755 xlimpnfv 45759 cncfshift 45795 stoweidlem53 45974 stoweidlem57 45978 fourierdlem48 46075 fourierdlem73 46100 sge0gerp 46316 sge0resplit 46327 sge0reuz 46368 meaiuninc3v 46405 smfsup 46735 smfsupmpt 46736 smfinf 46739 smfinfmpt 46740 cbvrex2 47019 2reu8i 47028 mogoldbb 47659 |
Copyright terms: Public domain | W3C validator |