| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2370. See nfrex 3349 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdw 3284 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: nfiun 4987 rexopabb 5488 nffr 5611 abrexex2g 7943 indexfi 9311 nfoi 9467 ixpiunwdom 9543 hsmexlem2 10380 iunfo 10492 iundom2g 10493 reclem2pr 11001 nfwrd 14508 nfsum1 15656 nfsum 15657 nfcprod1 15874 nfcprod 15875 ptclsg 23502 iunmbl2 25458 mbfsup 25565 limciun 25795 opreu2reuALT 32406 iundisjf 32518 xrofsup 32690 locfinreflem 33830 esum2d 34083 bnj873 34914 bnj1014 34951 bnj1123 34976 bnj1307 35013 bnj1445 35034 bnj1446 35035 bnj1467 35044 bnj1463 35045 onvf1odlem2 35091 poimirlem24 37638 poimirlem26 37640 poimirlem27 37641 indexa 37727 filbcmb 37734 sdclem2 37736 sdclem1 37737 fdc1 37740 sbcrexgOLD 42773 rexrabdioph 42782 rexfrabdioph 42783 elnn0rabdioph 42791 dvdsrabdioph 42798 oaun3lem1 43363 modelaxreplem3 44970 modelaxrep 44971 permaxrep 44996 disjrnmpt2 45182 rnmptbdlem 45249 infrnmptle 45419 infxrunb3rnmpt 45424 climinff 45609 xlimmnfv 45832 xlimpnfv 45836 cncfshift 45872 stoweidlem53 46051 stoweidlem57 46055 fourierdlem48 46152 fourierdlem73 46177 sge0gerp 46393 sge0resplit 46404 sge0reuz 46445 meaiuninc3v 46482 smfsup 46812 smfsupmpt 46813 smfinf 46816 smfinfmpt 46817 cbvrex2 47105 2reu8i 47114 mogoldbb 47786 |
| Copyright terms: Public domain | W3C validator |