| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2371. See nfrex 3351 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdw 3286 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2877 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: nfiun 4990 rexopabb 5491 nffr 5614 abrexex2g 7946 indexfi 9318 nfoi 9474 ixpiunwdom 9550 hsmexlem2 10387 iunfo 10499 iundom2g 10500 reclem2pr 11008 nfwrd 14515 nfsum1 15663 nfsum 15664 nfcprod1 15881 nfcprod 15882 ptclsg 23509 iunmbl2 25465 mbfsup 25572 limciun 25802 opreu2reuALT 32413 iundisjf 32525 xrofsup 32697 locfinreflem 33837 esum2d 34090 bnj873 34921 bnj1014 34958 bnj1123 34983 bnj1307 35020 bnj1445 35041 bnj1446 35042 bnj1467 35051 bnj1463 35052 onvf1odlem2 35098 poimirlem24 37645 poimirlem26 37647 poimirlem27 37648 indexa 37734 filbcmb 37741 sdclem2 37743 sdclem1 37744 fdc1 37747 sbcrexgOLD 42780 rexrabdioph 42789 rexfrabdioph 42790 elnn0rabdioph 42798 dvdsrabdioph 42805 oaun3lem1 43370 modelaxreplem3 44977 modelaxrep 44978 permaxrep 45003 disjrnmpt2 45189 rnmptbdlem 45256 infrnmptle 45426 infxrunb3rnmpt 45431 climinff 45616 xlimmnfv 45839 xlimpnfv 45843 cncfshift 45879 stoweidlem53 46058 stoweidlem57 46062 fourierdlem48 46159 fourierdlem73 46184 sge0gerp 46400 sge0resplit 46411 sge0reuz 46452 meaiuninc3v 46489 smfsup 46819 smfsupmpt 46820 smfinf 46823 smfinfmpt 46824 cbvrex2 47109 2reu8i 47118 mogoldbb 47790 |
| Copyright terms: Public domain | W3C validator |