| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2370. See nfrex 3346 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdw 3282 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: nfiun 4983 rexopabb 5483 nffr 5604 abrexex2g 7922 indexfi 9287 nfoi 9443 ixpiunwdom 9519 hsmexlem2 10356 iunfo 10468 iundom2g 10469 reclem2pr 10977 nfwrd 14484 nfsum1 15632 nfsum 15633 nfcprod1 15850 nfcprod 15851 ptclsg 23535 iunmbl2 25491 mbfsup 25598 limciun 25828 opreu2reuALT 32456 iundisjf 32568 xrofsup 32740 locfinreflem 33823 esum2d 34076 bnj873 34907 bnj1014 34944 bnj1123 34969 bnj1307 35006 bnj1445 35027 bnj1446 35028 bnj1467 35037 bnj1463 35038 onvf1odlem2 35084 poimirlem24 37631 poimirlem26 37633 poimirlem27 37634 indexa 37720 filbcmb 37727 sdclem2 37729 sdclem1 37730 fdc1 37733 sbcrexgOLD 42766 rexrabdioph 42775 rexfrabdioph 42776 elnn0rabdioph 42784 dvdsrabdioph 42791 oaun3lem1 43356 modelaxreplem3 44963 modelaxrep 44964 permaxrep 44989 disjrnmpt2 45175 rnmptbdlem 45242 infrnmptle 45412 infxrunb3rnmpt 45417 climinff 45602 xlimmnfv 45825 xlimpnfv 45829 cncfshift 45865 stoweidlem53 46044 stoweidlem57 46048 fourierdlem48 46145 fourierdlem73 46170 sge0gerp 46386 sge0resplit 46397 sge0reuz 46438 meaiuninc3v 46475 smfsup 46805 smfsupmpt 46806 smfinf 46809 smfinfmpt 46810 cbvrex2 47098 2reu8i 47107 mogoldbb 47779 |
| Copyright terms: Public domain | W3C validator |