Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2370. See nfrexg 3340 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdw 3289 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1783 Ⅎwnfc 2884 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 |
This theorem is referenced by: nfiun 4961 rexopabb 5454 nffr 5574 abrexex2g 7839 indexfi 9175 nfoi 9321 ixpiunwdom 9397 hsmexlem2 10233 iunfo 10345 iundom2g 10346 reclem2pr 10854 nfwrd 14295 nfsum1 15450 nfsum 15451 nfsumOLD 15452 nfcprod1 15669 nfcprod 15670 ptclsg 22815 iunmbl2 24770 mbfsup 24877 limciun 25107 opreu2reuALT 30874 iundisjf 30977 xrofsup 31139 locfinreflem 31839 esum2d 32110 bnj873 32953 bnj1014 32990 bnj1123 33015 bnj1307 33052 bnj1445 33073 bnj1446 33074 bnj1467 33083 bnj1463 33084 poimirlem24 35849 poimirlem26 35851 poimirlem27 35852 indexa 35939 filbcmb 35946 sdclem2 35948 sdclem1 35949 fdc1 35952 sbcrexgOLD 40802 rexrabdioph 40811 rexfrabdioph 40812 elnn0rabdioph 40820 dvdsrabdioph 40827 disjrnmpt2 42946 rnmptbdlem 43022 infrnmptle 43191 infxrunb3rnmpt 43196 climinff 43381 xlimmnfv 43604 xlimpnfv 43608 cncfshift 43644 stoweidlem53 43823 stoweidlem57 43827 fourierdlem48 43924 fourierdlem73 43949 sge0gerp 44163 sge0resplit 44174 sge0reuz 44215 meaiuninc3v 44252 smfsup 44582 smfsupmpt 44583 smfinf 44586 smfinfmpt 44587 cbvrex2 44840 2reu8i 44849 mogoldbb 45481 |
Copyright terms: Public domain | W3C validator |