| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2372. See nfrex 3341 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdw 3278 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1548 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2879 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: nfiun 4971 rexopabb 5466 nffr 5587 abrexex2g 7896 indexfi 9244 nfoi 9400 ixpiunwdom 9476 hsmexlem2 10318 iunfo 10430 iundom2g 10431 reclem2pr 10939 nfwrd 14450 nfsum1 15597 nfsum 15598 nfcprod1 15815 nfcprod 15816 ptclsg 23530 iunmbl2 25485 mbfsup 25592 limciun 25822 opreu2reuALT 32456 iundisjf 32569 xrofsup 32750 locfinreflem 33853 esum2d 34106 bnj873 34936 bnj1014 34973 bnj1123 34998 bnj1307 35035 bnj1445 35056 bnj1446 35057 bnj1467 35066 bnj1463 35067 onvf1odlem2 35148 poimirlem24 37694 poimirlem26 37696 poimirlem27 37697 indexa 37783 filbcmb 37790 sdclem2 37792 sdclem1 37793 fdc1 37796 sbcrexgOLD 42888 rexrabdioph 42897 rexfrabdioph 42898 elnn0rabdioph 42906 dvdsrabdioph 42913 oaun3lem1 43477 modelaxreplem3 45083 modelaxrep 45084 permaxrep 45109 disjrnmpt2 45295 rnmptbdlem 45362 infrnmptle 45531 infxrunb3rnmpt 45536 climinff 45721 xlimmnfv 45942 xlimpnfv 45946 cncfshift 45982 stoweidlem53 46161 stoweidlem57 46165 fourierdlem48 46262 fourierdlem73 46287 sge0gerp 46503 sge0resplit 46514 sge0reuz 46555 meaiuninc3v 46592 smfsup 46922 smfsupmpt 46923 smfinf 46926 smfinfmpt 46927 cbvrex2 47214 2reu8i 47223 mogoldbb 47895 |
| Copyright terms: Public domain | W3C validator |