| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2376. See nfrex 3354 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdw 3290 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2883 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: nfiun 4999 rexopabb 5503 nffr 5627 abrexex2g 7963 indexfi 9372 nfoi 9528 ixpiunwdom 9604 hsmexlem2 10441 iunfo 10553 iundom2g 10554 reclem2pr 11062 nfwrd 14561 nfsum1 15706 nfsum 15707 nfcprod1 15924 nfcprod 15925 ptclsg 23553 iunmbl2 25510 mbfsup 25617 limciun 25847 opreu2reuALT 32458 iundisjf 32570 xrofsup 32744 locfinreflem 33871 esum2d 34124 bnj873 34955 bnj1014 34992 bnj1123 35017 bnj1307 35054 bnj1445 35075 bnj1446 35076 bnj1467 35085 bnj1463 35086 poimirlem24 37668 poimirlem26 37670 poimirlem27 37671 indexa 37757 filbcmb 37764 sdclem2 37766 sdclem1 37767 fdc1 37770 sbcrexgOLD 42808 rexrabdioph 42817 rexfrabdioph 42818 elnn0rabdioph 42826 dvdsrabdioph 42833 oaun3lem1 43398 modelaxreplem3 45005 modelaxrep 45006 permaxrep 45031 disjrnmpt2 45212 rnmptbdlem 45279 infrnmptle 45450 infxrunb3rnmpt 45455 climinff 45640 xlimmnfv 45863 xlimpnfv 45867 cncfshift 45903 stoweidlem53 46082 stoweidlem57 46086 fourierdlem48 46183 fourierdlem73 46208 sge0gerp 46424 sge0resplit 46435 sge0reuz 46476 meaiuninc3v 46513 smfsup 46843 smfsupmpt 46844 smfinf 46847 smfinfmpt 46848 cbvrex2 47133 2reu8i 47142 mogoldbb 47799 |
| Copyright terms: Public domain | W3C validator |