| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2370. See nfrex 3338 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdw 3275 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: nfiun 4973 rexopabb 5471 nffr 5592 abrexex2g 7899 indexfi 9250 nfoi 9406 ixpiunwdom 9482 hsmexlem2 10321 iunfo 10433 iundom2g 10434 reclem2pr 10942 nfwrd 14450 nfsum1 15597 nfsum 15598 nfcprod1 15815 nfcprod 15816 ptclsg 23500 iunmbl2 25456 mbfsup 25563 limciun 25793 opreu2reuALT 32421 iundisjf 32533 xrofsup 32710 locfinreflem 33807 esum2d 34060 bnj873 34891 bnj1014 34928 bnj1123 34953 bnj1307 34990 bnj1445 35011 bnj1446 35012 bnj1467 35021 bnj1463 35022 onvf1odlem2 35081 poimirlem24 37628 poimirlem26 37630 poimirlem27 37631 indexa 37717 filbcmb 37724 sdclem2 37726 sdclem1 37727 fdc1 37730 sbcrexgOLD 42762 rexrabdioph 42771 rexfrabdioph 42772 elnn0rabdioph 42780 dvdsrabdioph 42787 oaun3lem1 43351 modelaxreplem3 44958 modelaxrep 44959 permaxrep 44984 disjrnmpt2 45170 rnmptbdlem 45237 infrnmptle 45406 infxrunb3rnmpt 45411 climinff 45596 xlimmnfv 45819 xlimpnfv 45823 cncfshift 45859 stoweidlem53 46038 stoweidlem57 46042 fourierdlem48 46139 fourierdlem73 46164 sge0gerp 46380 sge0resplit 46391 sge0reuz 46432 meaiuninc3v 46469 smfsup 46799 smfsupmpt 46800 smfinf 46803 smfinfmpt 46804 cbvrex2 47092 2reu8i 47101 mogoldbb 47773 |
| Copyright terms: Public domain | W3C validator |