![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrexw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2372. See nfrex 3372 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdw 3308 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1549 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1543 Ⅎwnf 1786 Ⅎwnfc 2884 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-10 2138 ax-11 2155 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 |
This theorem is referenced by: nfiun 5028 rexopabb 5529 nffr 5651 abrexex2g 7951 indexfi 9360 nfoi 9509 ixpiunwdom 9585 hsmexlem2 10422 iunfo 10534 iundom2g 10535 reclem2pr 11043 nfwrd 14493 nfsum1 15636 nfsum 15637 nfcprod1 15854 nfcprod 15855 ptclsg 23119 iunmbl2 25074 mbfsup 25181 limciun 25411 opreu2reuALT 31748 iundisjf 31851 xrofsup 32011 locfinreflem 32851 esum2d 33122 bnj873 33966 bnj1014 34003 bnj1123 34028 bnj1307 34065 bnj1445 34086 bnj1446 34087 bnj1467 34096 bnj1463 34097 poimirlem24 36560 poimirlem26 36562 poimirlem27 36563 indexa 36649 filbcmb 36656 sdclem2 36658 sdclem1 36659 fdc1 36662 sbcrexgOLD 41571 rexrabdioph 41580 rexfrabdioph 41581 elnn0rabdioph 41589 dvdsrabdioph 41596 oaun3lem1 42172 disjrnmpt2 43934 rnmptbdlem 44007 infrnmptle 44181 infxrunb3rnmpt 44186 climinff 44375 xlimmnfv 44598 xlimpnfv 44602 cncfshift 44638 stoweidlem53 44817 stoweidlem57 44821 fourierdlem48 44918 fourierdlem73 44943 sge0gerp 45159 sge0resplit 45170 sge0reuz 45211 meaiuninc3v 45248 smfsup 45578 smfsupmpt 45579 smfinf 45582 smfinfmpt 45583 cbvrex2 45860 2reu8i 45869 mogoldbb 46501 |
Copyright terms: Public domain | W3C validator |