MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrex2v Structured version   Visualization version   GIF version

Theorem cbvrex2v 3400
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrex2vw 3397 when possible. (Contributed by FL, 2-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvrex2v.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvrex2v.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvrex2v (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑤,𝐵   𝑥,𝐵,𝑦   𝑧,𝐵,𝑦   𝜒,𝑤   𝜒,𝑥   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvrex2v
StepHypRef Expression
1 cbvrex2v.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21rexbidv 3226 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜒))
32cbvrexv 3389 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑦𝐵 𝜒)
4 cbvrex2v.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvrexv 3389 . . 3 (∃𝑦𝐵 𝜒 ↔ ∃𝑤𝐵 𝜓)
65rexbii 3181 . 2 (∃𝑧𝐴𝑦𝐵 𝜒 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 274 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator