| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3279 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3279 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: cbvrexsvw 3291 cbvrexsvwOLD 3294 cbvreuw 3382 reu8nf 3840 cbviun 5000 isarep1 6606 isarep1OLD 6607 fvelimad 6928 dffo3f 7078 elabrex 7216 elabrexg 7217 onminex 7778 boxcutc 8914 indexfi 9311 wdom2d 9533 hsmexlem2 10380 fprodle 15962 iundisj 25449 mbfsup 25565 iundisjf 32518 iundisjfi 32719 voliune 34219 volfiniune 34220 bnj1542 34847 cvmcov 35250 poimirlem24 37638 poimirlem26 37640 indexa 37727 mndmolinv 42083 primrootsunit1 42085 primrootsunit 42086 primrootspoweq0 42094 aks6d1c4 42112 aks6d1c6isolem1 42162 aks6d1c6isolem2 42163 rhmqusspan 42173 grpods 42182 unitscyglem1 42183 unitscyglem3 42185 unitscyglem4 42186 rexrabdioph 42782 rexfrabdioph 42783 disjrnmpt2 45182 caucvgbf 45485 limsuppnfd 45700 limsuppnf 45709 limsupre2 45723 limsupre3 45731 limsupre3uz 45734 limsupreuz 45735 liminfreuz 45801 stoweidlem31 46029 stoweidlem59 46057 rexsb 47100 cbvrex2 47105 2reu8i 47114 |
| Copyright terms: Public domain | W3C validator |