| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3273 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3273 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: cbvrexsvw 3284 cbvrexsvwOLD 3287 cbvreuw 3372 reu8nf 3828 cbviun 4985 isarep1 6570 fvelimad 6889 dffo3f 7039 elabrex 7176 elabrexg 7177 onminex 7735 boxcutc 8865 indexfi 9244 wdom2d 9466 hsmexlem2 10315 fprodle 15900 iundisj 25474 mbfsup 25590 iundisjf 32564 iundisjfi 32773 voliune 34237 volfiniune 34238 bnj1542 34864 cvmcov 35295 poimirlem24 37683 poimirlem26 37685 indexa 37772 mndmolinv 42127 primrootsunit1 42129 primrootsunit 42130 primrootspoweq0 42138 aks6d1c4 42156 aks6d1c6isolem1 42206 aks6d1c6isolem2 42207 rhmqusspan 42217 grpods 42226 unitscyglem1 42227 unitscyglem3 42229 unitscyglem4 42230 rexrabdioph 42826 rexfrabdioph 42827 disjrnmpt2 45224 caucvgbf 45526 limsuppnfd 45739 limsuppnf 45748 limsupre2 45762 limsupre3 45770 limsupre3uz 45773 limsupreuz 45774 liminfreuz 45840 stoweidlem31 46068 stoweidlem59 46096 rexsb 47129 cbvrex2 47134 2reu8i 47143 |
| Copyright terms: Public domain | W3C validator |