Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrex 3378 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2909 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2909 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexfw 3369 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1790 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-nf 1791 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 |
This theorem is referenced by: cbvrmowOLD 3376 cbvrexsvw 3401 reu8nf 3815 cbviun 4971 isarep1 6520 fvelimad 6833 elabrex 7113 onminex 7646 boxcutc 8712 indexfi 9105 wdom2d 9317 hsmexlem2 10184 fprodle 15704 iundisj 24710 mbfsup 24826 iundisjf 30924 iundisjfi 31113 voliune 32193 volfiniune 32194 bnj1542 32833 cvmcov 33221 poimirlem24 35797 poimirlem26 35799 indexa 35887 rexrabdioph 40613 rexfrabdioph 40614 elabrexg 42559 dffo3f 42687 disjrnmpt2 42696 limsuppnfd 43214 limsuppnf 43223 limsupre2 43237 limsupre3 43245 limsupre3uz 43248 limsupreuz 43249 liminfreuz 43315 stoweidlem31 43543 stoweidlem59 43571 rexsb 44559 cbvrex2 44564 2reu8i 44573 |
Copyright terms: Public domain | W3C validator |