Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrex 3381 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexfw 3371 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-11 2155 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 |
This theorem is referenced by: cbvreuw 3377 cbvrmowOLD 3379 cbvrexsvw 3404 reu8nf 3811 cbviun 4967 isarep1 6530 isarep1OLD 6531 fvelimad 6845 elabrex 7125 onminex 7661 boxcutc 8738 indexfi 9136 wdom2d 9348 hsmexlem2 10192 fprodle 15715 iundisj 24721 mbfsup 24837 iundisjf 30937 iundisjfi 31126 voliune 32206 volfiniune 32207 bnj1542 32846 cvmcov 33234 poimirlem24 35810 poimirlem26 35812 indexa 35900 rexrabdioph 40623 rexfrabdioph 40624 elabrexg 42596 dffo3f 42724 disjrnmpt2 42733 limsuppnfd 43250 limsuppnf 43259 limsupre2 43273 limsupre3 43281 limsupre3uz 43284 limsupreuz 43285 liminfreuz 43351 stoweidlem31 43579 stoweidlem59 43607 rexsb 44602 cbvrex2 44607 2reu8i 44616 |
Copyright terms: Public domain | W3C validator |