![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3293 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2366. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexfw 3293 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1778 ∃wrex 3060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-11 2147 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 |
This theorem is referenced by: cbvrexsvw 3306 cbvrexsvwOLD 3308 cbvreuw 3394 reu8nf 3869 cbviun 5036 isarep1 6640 isarep1OLD 6641 fvelimad 6962 dffo3f 7112 elabrex 7249 elabrexg 7250 onminex 7803 boxcutc 8962 indexfi 9397 wdom2d 9616 hsmexlem2 10461 fprodle 15993 iundisj 25565 mbfsup 25681 iundisjf 32509 iundisjfi 32701 voliune 34075 volfiniune 34076 bnj1542 34715 cvmcov 35104 poimirlem24 37358 poimirlem26 37360 indexa 37447 mndmolinv 41807 primrootsunit1 41809 primrootsunit 41810 primrootspoweq0 41818 aks6d1c4 41836 aks6d1c6isolem1 41886 aks6d1c6isolem2 41887 rhmqusspan 41897 grpods 41906 unitscyglem1 41907 unitscyglem3 41909 unitscyglem4 41910 rexrabdioph 42488 rexfrabdioph 42489 disjrnmpt2 44831 caucvgbf 45141 limsuppnfd 45359 limsuppnf 45368 limsupre2 45382 limsupre3 45390 limsupre3uz 45393 limsupreuz 45394 liminfreuz 45460 stoweidlem31 45688 stoweidlem59 45716 rexsb 46748 cbvrex2 46753 2reu8i 46762 |
Copyright terms: Public domain | W3C validator |