MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexw Structured version   Visualization version   GIF version

Theorem cbvrexw 3305
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3303 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2372. (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvralw.1 𝑦𝜑
cbvralw.2 𝑥𝜓
cbvralw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrexw
StepHypRef Expression
1 nfcv 2904 . 2 𝑥𝐴
2 nfcv 2904 . 2 𝑦𝐴
3 cbvralw.1 . 2 𝑦𝜑
4 cbvralw.2 . 2 𝑥𝜓
5 cbvralw.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrexfw 3303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-11 2155  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072
This theorem is referenced by:  cbvrexsvw  3316  cbvrexsvwOLD  3318  cbvreuw  3407  cbvrmowOLD  3412  reu8nf  3872  cbviun  5040  isarep1  6638  isarep1OLD  6639  fvelimad  6960  elabrex  7242  onminex  7790  boxcutc  8935  indexfi  9360  wdom2d  9575  hsmexlem2  10422  fprodle  15940  iundisj  25065  mbfsup  25181  iundisjf  31820  iundisjfi  32007  voliune  33227  volfiniune  33228  bnj1542  33868  cvmcov  34254  poimirlem24  36512  poimirlem26  36514  indexa  36601  rexrabdioph  41532  rexfrabdioph  41533  elabrexg  43728  dffo3f  43877  disjrnmpt2  43886  caucvgbf  44200  limsuppnfd  44418  limsuppnf  44427  limsupre2  44441  limsupre3  44449  limsupre3uz  44452  limsupreuz  44453  liminfreuz  44519  stoweidlem31  44747  stoweidlem59  44775  rexsb  45807  cbvrex2  45812  2reu8i  45821
  Copyright terms: Public domain W3C validator