MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexw Structured version   Visualization version   GIF version

Theorem cbvrexw 3276
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3274 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvralw.1 𝑦𝜑
cbvralw.2 𝑥𝜓
cbvralw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrexw
StepHypRef Expression
1 nfcv 2895 . 2 𝑥𝐴
2 nfcv 2895 . 2 𝑦𝐴
3 cbvralw.1 . 2 𝑦𝜑
4 cbvralw.2 . 2 𝑥𝜓
5 cbvralw.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrexfw 3274 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1784  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-11 2162  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058
This theorem is referenced by:  cbvrexsvw  3285  cbvrexsvwOLD  3288  cbvreuw  3373  reu8nf  3824  cbviun  4985  isarep1  6575  fvelimad  6895  dffo3f  7045  elabrex  7182  elabrexg  7183  onminex  7741  boxcutc  8871  indexfi  9251  wdom2d  9473  hsmexlem2  10325  fprodle  15905  iundisj  25477  mbfsup  25593  iundisjf  32571  iundisjfi  32783  voliune  34263  volfiniune  34264  bnj1542  34890  cvmcov  35328  poimirlem24  37704  poimirlem26  37706  indexa  37793  mndmolinv  42208  primrootsunit1  42210  primrootsunit  42211  primrootspoweq0  42219  aks6d1c4  42237  aks6d1c6isolem1  42287  aks6d1c6isolem2  42288  rhmqusspan  42298  grpods  42307  unitscyglem1  42308  unitscyglem3  42310  unitscyglem4  42311  rexrabdioph  42911  rexfrabdioph  42912  disjrnmpt2  45309  caucvgbf  45611  limsuppnfd  45824  limsuppnf  45833  limsupre2  45847  limsupre3  45855  limsupre3uz  45858  limsupreuz  45859  liminfreuz  45925  stoweidlem31  46153  stoweidlem59  46181  rexsb  47223  cbvrex2  47228  2reu8i  47237
  Copyright terms: Public domain W3C validator