| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3274 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3274 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: cbvrexsvw 3285 cbvrexsvwOLD 3288 cbvreuw 3373 reu8nf 3824 cbviun 4985 isarep1 6575 fvelimad 6895 dffo3f 7045 elabrex 7182 elabrexg 7183 onminex 7741 boxcutc 8871 indexfi 9251 wdom2d 9473 hsmexlem2 10325 fprodle 15905 iundisj 25477 mbfsup 25593 iundisjf 32571 iundisjfi 32783 voliune 34263 volfiniune 34264 bnj1542 34890 cvmcov 35328 poimirlem24 37704 poimirlem26 37706 indexa 37793 mndmolinv 42208 primrootsunit1 42210 primrootsunit 42211 primrootspoweq0 42219 aks6d1c4 42237 aks6d1c6isolem1 42287 aks6d1c6isolem2 42288 rhmqusspan 42298 grpods 42307 unitscyglem1 42308 unitscyglem3 42310 unitscyglem4 42311 rexrabdioph 42911 rexfrabdioph 42912 disjrnmpt2 45309 caucvgbf 45611 limsuppnfd 45824 limsuppnf 45833 limsupre2 45847 limsupre3 45855 limsupre3uz 45858 limsupreuz 45859 liminfreuz 45925 stoweidlem31 46153 stoweidlem59 46181 rexsb 47223 cbvrex2 47228 2reu8i 47237 |
| Copyright terms: Public domain | W3C validator |