| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3285 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3285 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: cbvrexsvw 3297 cbvrexsvwOLD 3300 cbvreuw 3389 reu8nf 3852 cbviun 5012 isarep1 6626 isarep1OLD 6627 fvelimad 6946 dffo3f 7096 elabrex 7234 elabrexg 7235 onminex 7796 boxcutc 8955 indexfi 9372 wdom2d 9594 hsmexlem2 10441 fprodle 16012 iundisj 25501 mbfsup 25617 iundisjf 32570 iundisjfi 32773 voliune 34260 volfiniune 34261 bnj1542 34888 cvmcov 35285 poimirlem24 37668 poimirlem26 37670 indexa 37757 mndmolinv 42108 primrootsunit1 42110 primrootsunit 42111 primrootspoweq0 42119 aks6d1c4 42137 aks6d1c6isolem1 42187 aks6d1c6isolem2 42188 rhmqusspan 42198 grpods 42207 unitscyglem1 42208 unitscyglem3 42210 unitscyglem4 42211 rexrabdioph 42817 rexfrabdioph 42818 disjrnmpt2 45212 caucvgbf 45516 limsuppnfd 45731 limsuppnf 45740 limsupre2 45754 limsupre3 45762 limsupre3uz 45765 limsupreuz 45766 liminfreuz 45832 stoweidlem31 46060 stoweidlem59 46088 rexsb 47128 cbvrex2 47133 2reu8i 47142 |
| Copyright terms: Public domain | W3C validator |