| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3271 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3271 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: cbvrexsvw 3282 cbvrexsvwOLD 3285 cbvreuw 3373 reu8nf 3831 cbviun 4988 isarep1 6575 fvelimad 6894 dffo3f 7044 elabrex 7182 elabrexg 7183 onminex 7742 boxcutc 8875 indexfi 9269 wdom2d 9491 hsmexlem2 10340 fprodle 15921 iundisj 25465 mbfsup 25581 iundisjf 32551 iundisjfi 32752 voliune 34195 volfiniune 34196 bnj1542 34823 cvmcov 35235 poimirlem24 37623 poimirlem26 37625 indexa 37712 mndmolinv 42068 primrootsunit1 42070 primrootsunit 42071 primrootspoweq0 42079 aks6d1c4 42097 aks6d1c6isolem1 42147 aks6d1c6isolem2 42148 rhmqusspan 42158 grpods 42167 unitscyglem1 42168 unitscyglem3 42170 unitscyglem4 42171 rexrabdioph 42767 rexfrabdioph 42768 disjrnmpt2 45166 caucvgbf 45469 limsuppnfd 45684 limsuppnf 45693 limsupre2 45707 limsupre3 45715 limsupre3uz 45718 limsupreuz 45719 liminfreuz 45785 stoweidlem31 46013 stoweidlem59 46041 rexsb 47084 cbvrex2 47089 2reu8i 47098 |
| Copyright terms: Public domain | W3C validator |