![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3303 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2372. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexfw 3303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-11 2155 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 |
This theorem is referenced by: cbvrexsvw 3316 cbvrexsvwOLD 3318 cbvreuw 3407 cbvrmowOLD 3412 reu8nf 3872 cbviun 5040 isarep1 6638 isarep1OLD 6639 fvelimad 6960 elabrex 7242 onminex 7790 boxcutc 8935 indexfi 9360 wdom2d 9575 hsmexlem2 10422 fprodle 15940 iundisj 25065 mbfsup 25181 iundisjf 31820 iundisjfi 32007 voliune 33227 volfiniune 33228 bnj1542 33868 cvmcov 34254 poimirlem24 36512 poimirlem26 36514 indexa 36601 rexrabdioph 41532 rexfrabdioph 41533 elabrexg 43728 dffo3f 43877 disjrnmpt2 43886 caucvgbf 44200 limsuppnfd 44418 limsuppnf 44427 limsupre2 44441 limsupre3 44449 limsupre3uz 44452 limsupreuz 44453 liminfreuz 44519 stoweidlem31 44747 stoweidlem59 44775 rexsb 45807 cbvrex2 45812 2reu8i 45821 |
Copyright terms: Public domain | W3C validator |