Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrex 3369 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexfw 3360 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 |
This theorem is referenced by: cbvrmowOLD 3367 cbvrexsvw 3392 reu8nf 3806 cbviun 4962 isarep1 6506 fvelimad 6818 elabrex 7098 onminex 7629 boxcutc 8687 indexfi 9057 wdom2d 9269 hsmexlem2 10114 fprodle 15634 iundisj 24617 mbfsup 24733 iundisjf 30829 iundisjfi 31019 voliune 32097 volfiniune 32098 bnj1542 32737 cvmcov 33125 poimirlem24 35728 poimirlem26 35730 indexa 35818 rexrabdioph 40532 rexfrabdioph 40533 elabrexg 42478 dffo3f 42606 disjrnmpt2 42615 limsuppnfd 43133 limsuppnf 43142 limsupre2 43156 limsupre3 43164 limsupre3uz 43167 limsupreuz 43168 liminfreuz 43234 stoweidlem31 43462 stoweidlem59 43490 rexsb 44478 cbvrex2 44483 2reu8i 44492 |
Copyright terms: Public domain | W3C validator |