| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3281 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3281 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: cbvrexsvw 3293 cbvrexsvwOLD 3296 cbvreuw 3384 reu8nf 3843 cbviun 5003 isarep1 6609 isarep1OLD 6610 fvelimad 6931 dffo3f 7081 elabrex 7219 elabrexg 7220 onminex 7781 boxcutc 8917 indexfi 9318 wdom2d 9540 hsmexlem2 10387 fprodle 15969 iundisj 25456 mbfsup 25572 iundisjf 32525 iundisjfi 32726 voliune 34226 volfiniune 34227 bnj1542 34854 cvmcov 35257 poimirlem24 37645 poimirlem26 37647 indexa 37734 mndmolinv 42090 primrootsunit1 42092 primrootsunit 42093 primrootspoweq0 42101 aks6d1c4 42119 aks6d1c6isolem1 42169 aks6d1c6isolem2 42170 rhmqusspan 42180 grpods 42189 unitscyglem1 42190 unitscyglem3 42192 unitscyglem4 42193 rexrabdioph 42789 rexfrabdioph 42790 disjrnmpt2 45189 caucvgbf 45492 limsuppnfd 45707 limsuppnf 45716 limsupre2 45730 limsupre3 45738 limsupre3uz 45741 limsupreuz 45742 liminfreuz 45808 stoweidlem31 46036 stoweidlem59 46064 rexsb 47104 cbvrex2 47109 2reu8i 47118 |
| Copyright terms: Public domain | W3C validator |