MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexw Structured version   Visualization version   GIF version

Theorem cbvrexw 3283
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3281 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvralw.1 𝑦𝜑
cbvralw.2 𝑥𝜓
cbvralw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrexw
StepHypRef Expression
1 nfcv 2892 . 2 𝑥𝐴
2 nfcv 2892 . 2 𝑦𝐴
3 cbvralw.1 . 2 𝑦𝜑
4 cbvralw.2 . 2 𝑥𝜓
5 cbvralw.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrexfw 3281 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055
This theorem is referenced by:  cbvrexsvw  3293  cbvrexsvwOLD  3296  cbvreuw  3384  reu8nf  3843  cbviun  5003  isarep1  6609  isarep1OLD  6610  fvelimad  6931  dffo3f  7081  elabrex  7219  elabrexg  7220  onminex  7781  boxcutc  8917  indexfi  9318  wdom2d  9540  hsmexlem2  10387  fprodle  15969  iundisj  25456  mbfsup  25572  iundisjf  32525  iundisjfi  32726  voliune  34226  volfiniune  34227  bnj1542  34854  cvmcov  35257  poimirlem24  37645  poimirlem26  37647  indexa  37734  mndmolinv  42090  primrootsunit1  42092  primrootsunit  42093  primrootspoweq0  42101  aks6d1c4  42119  aks6d1c6isolem1  42169  aks6d1c6isolem2  42170  rhmqusspan  42180  grpods  42189  unitscyglem1  42190  unitscyglem3  42192  unitscyglem4  42193  rexrabdioph  42789  rexfrabdioph  42790  disjrnmpt2  45189  caucvgbf  45492  limsuppnfd  45707  limsuppnf  45716  limsupre2  45730  limsupre3  45738  limsupre3uz  45741  limsupreuz  45742  liminfreuz  45808  stoweidlem31  46036  stoweidlem59  46064  rexsb  47104  cbvrex2  47109  2reu8i  47118
  Copyright terms: Public domain W3C validator