![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 3311 with more disjoint variable conditions. (Contributed by NM, 31-Jul-2003.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvralw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvralw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvralw.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvralw.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexfw 3311 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 |
This theorem is referenced by: cbvrexsvw 3324 cbvrexsvwOLD 3327 cbvreuw 3418 reu8nf 3899 cbviun 5059 isarep1 6667 isarep1OLD 6668 fvelimad 6989 dffo3f 7140 elabrex 7279 elabrexg 7280 onminex 7838 boxcutc 8999 indexfi 9430 wdom2d 9649 hsmexlem2 10496 fprodle 16044 iundisj 25602 mbfsup 25718 iundisjf 32611 iundisjfi 32801 voliune 34193 volfiniune 34194 bnj1542 34833 cvmcov 35231 poimirlem24 37604 poimirlem26 37606 indexa 37693 mndmolinv 42052 primrootsunit1 42054 primrootsunit 42055 primrootspoweq0 42063 aks6d1c4 42081 aks6d1c6isolem1 42131 aks6d1c6isolem2 42132 rhmqusspan 42142 grpods 42151 unitscyglem1 42152 unitscyglem3 42154 unitscyglem4 42155 rexrabdioph 42750 rexfrabdioph 42751 disjrnmpt2 45095 caucvgbf 45405 limsuppnfd 45623 limsuppnf 45632 limsupre2 45646 limsupre3 45654 limsupre3uz 45657 limsupreuz 45658 liminfreuz 45724 stoweidlem31 45952 stoweidlem59 45980 rexsb 47014 cbvrex2 47019 2reu8i 47028 |
Copyright terms: Public domain | W3C validator |