| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexv | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw 3211 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexvw 3211 when possible. (Contributed by NM, 2-Jun-1998.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvralv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvrex 3329 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: cbvrex2v 3335 rexlimdvaacbv 44237 |
| Copyright terms: Public domain | W3C validator |