| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexv | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw 3225 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvrexvw 3225 when possible. (Contributed by NM, 2-Jun-1998.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvralv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvrex 3347 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: cbvrex2v 3353 rexlimdvaacbv 44204 |
| Copyright terms: Public domain | W3C validator |