|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvrexv | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw 3237 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker cbvrexvw 3237 when possible. (Contributed by NM, 2-Jun-1998.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| cbvralv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvrexv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvralv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvrex 3362 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: cbvrex2v 3368 rexlimdvaacbv 44223 | 
| Copyright terms: Public domain | W3C validator |