Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexv | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw 3373 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexvw 3373 when possible. (Contributed by NM, 2-Jun-1998.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvralv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvralv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvrex 3369 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 |
This theorem is referenced by: cbvrex2v 3389 cygablOLD 19407 rexlimdvaacbv 41705 |
Copyright terms: Public domain | W3C validator |