Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgvv Structured version   Visualization version   GIF version

Theorem eulerpartlemgvv 32976
Description: Lemma for eulerpart 32982: value of the function 𝐺 evaluated. (Contributed by Thierry Arnoux, 10-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgvv ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → ((𝐺𝐴)‘𝐵) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵, 1, 0))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑡,𝑥,𝑦,𝑧   𝑓,𝑜,𝑟,𝐴   𝑜,𝐹   𝐻,𝑟   𝑓,𝐽   𝑛,𝑜,𝑟,𝐽,𝑥,𝑦   𝑜,𝑀   𝑓,𝑁   𝑔,𝑛,𝑃   𝑅,𝑜   𝑇,𝑜   𝑡,𝐴,𝑛,𝑥,𝑦   𝐵,𝑛,𝑡,𝑥,𝑦   𝑛,𝐹,𝑡,𝑥,𝑦   𝑡,𝐽   𝑛,𝑀,𝑡,𝑥,𝑦   𝑅,𝑛   𝑡,𝑟,𝑅,𝑥,𝑦   𝑇,𝑛,𝑟,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑔,𝑘)   𝐵(𝑧,𝑓,𝑔,𝑘,𝑜,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑡,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑧,𝑓,𝑔,𝑘)   𝑇(𝑧,𝑓,𝑔,𝑘)   𝐹(𝑧,𝑓,𝑔,𝑘,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑧,𝑓,𝑔,𝑘,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgvv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . . . 5 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . . . 5 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eulerpart.j . . . . 5 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 eulerpart.f . . . . 5 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
6 eulerpart.h . . . . 5 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
7 eulerpart.m . . . . 5 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
8 eulerpart.r . . . . 5 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
9 eulerpart.t . . . . 5 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
10 eulerpart.g . . . . 5 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemgv 32973 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1211fveq1d 6844 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴)‘𝐵) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))‘𝐵))
1312adantr 481 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → ((𝐺𝐴)‘𝐵) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))‘𝐵))
14 nnex 12159 . . 3 ℕ ∈ V
15 imassrn 6024 . . . 4 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ran 𝐹
164, 5oddpwdc 32954 . . . . 5 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
17 f1of 6784 . . . . 5 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)⟶ℕ)
18 frn 6675 . . . . 5 (𝐹:(𝐽 × ℕ0)⟶ℕ → ran 𝐹 ⊆ ℕ)
1916, 17, 18mp2b 10 . . . 4 ran 𝐹 ⊆ ℕ
2015, 19sstri 3953 . . 3 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ
21 simpr 485 . . 3 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
22 indfval 32615 . . 3 ((ℕ ∈ V ∧ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))‘𝐵) = if(𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))), 1, 0))
2314, 20, 21, 22mp3an12i 1465 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))‘𝐵) = if(𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))), 1, 0))
24 ffn 6668 . . . . . 6 (𝐹:(𝐽 × ℕ0)⟶ℕ → 𝐹 Fn (𝐽 × ℕ0))
2516, 17, 24mp2b 10 . . . . 5 𝐹 Fn (𝐽 × ℕ0)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemmf 32975 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
271, 2, 3, 4, 5, 6, 7eulerpartlem1 32967 . . . . . . . . . . 11 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
28 f1of 6784 . . . . . . . . . . 11 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
2927, 28ax-mp 5 . . . . . . . . . 10 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin)
3029ffvelcdmi 7034 . . . . . . . . 9 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3126, 30syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3231elin1d 4158 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ 𝒫 (𝐽 × ℕ0))
3332adantr 481 . . . . . 6 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ 𝒫 (𝐽 × ℕ0))
3433elpwid 4569 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → (𝑀‘(bits ∘ (𝐴𝐽))) ⊆ (𝐽 × ℕ0))
35 fvelimab 6914 . . . . 5 ((𝐹 Fn (𝐽 × ℕ0) ∧ (𝑀‘(bits ∘ (𝐴𝐽))) ⊆ (𝐽 × ℕ0)) → (𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ↔ ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵))
3625, 34, 35sylancr 587 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ↔ ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵))
374ssrab3 4040 . . . . . . . . 9 𝐽 ⊆ ℕ
38 fveq1 6841 . . . . . . . . . . . . . . . . . . 19 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑟𝑥) = ((bits ∘ (𝐴𝐽))‘𝑥))
3938eleq2d 2823 . . . . . . . . . . . . . . . . . 18 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑦 ∈ (𝑟𝑥) ↔ 𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥)))
4039anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑟 = (bits ∘ (𝐴𝐽)) → ((𝑥𝐽𝑦 ∈ (𝑟𝑥)) ↔ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))))
4140opabbidv 5171 . . . . . . . . . . . . . . . 16 (𝑟 = (bits ∘ (𝐴𝐽)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))})
4214, 37ssexi 5279 . . . . . . . . . . . . . . . . . 18 𝐽 ∈ V
43 abid2 2875 . . . . . . . . . . . . . . . . . . . 20 {𝑦𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥)} = ((bits ∘ (𝐴𝐽))‘𝑥)
4443fvexi 6856 . . . . . . . . . . . . . . . . . . 19 {𝑦𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥)} ∈ V
4544a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥𝐽 → {𝑦𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥)} ∈ V)
4642, 45opabex3 7900 . . . . . . . . . . . . . . . . 17 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))} ∈ V
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝑇𝑅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))} ∈ V)
487, 41, 26, 47fvmptd3 6971 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))})
49 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑡𝑦 = 𝑛) → 𝑥 = 𝑡)
5049eleq1d 2822 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑡𝑦 = 𝑛) → (𝑥𝐽𝑡𝐽))
51 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑡𝑦 = 𝑛) → 𝑦 = 𝑛)
5249fveq2d 6846 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑡𝑦 = 𝑛) → ((bits ∘ (𝐴𝐽))‘𝑥) = ((bits ∘ (𝐴𝐽))‘𝑡))
5351, 52eleq12d 2832 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑡𝑦 = 𝑛) → (𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥) ↔ 𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡)))
5450, 53anbi12d 631 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑡𝑦 = 𝑛) → ((𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥)) ↔ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))))
5554cbvopabv 5178 . . . . . . . . . . . . . . 15 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))} = {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))}
5648, 55eqtrdi 2792 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) = {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))})
5756eleq2d 2823 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑇𝑅) → (𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽))) ↔ 𝑤 ∈ {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))}))
581, 2, 3, 4, 5, 6, 7, 8, 9eulerpartlemt0 32969 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
5958simp1bi 1145 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
60 nn0ex 12419 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
6160, 14elmap 8809 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ (ℕ0m ℕ) ↔ 𝐴:ℕ⟶ℕ0)
6259, 61sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
63 ffun 6671 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
64 funres 6543 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐴 → Fun (𝐴𝐽))
6562, 63, 643syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ (𝑇𝑅) → Fun (𝐴𝐽))
66 fssres 6708 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝐴𝐽):𝐽⟶ℕ0)
6762, 37, 66sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽):𝐽⟶ℕ0)
68 fdm 6677 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝐽):𝐽⟶ℕ0 → dom (𝐴𝐽) = 𝐽)
6968eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝐽):𝐽⟶ℕ0 → (𝑡 ∈ dom (𝐴𝐽) ↔ 𝑡𝐽))
7067, 69syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (𝑇𝑅) → (𝑡 ∈ dom (𝐴𝐽) ↔ 𝑡𝐽))
7170biimpar 478 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡𝐽) → 𝑡 ∈ dom (𝐴𝐽))
72 fvco 6939 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝐴𝐽) ∧ 𝑡 ∈ dom (𝐴𝐽)) → ((bits ∘ (𝐴𝐽))‘𝑡) = (bits‘((𝐴𝐽)‘𝑡)))
7365, 71, 72syl2an2r 683 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡𝐽) → ((bits ∘ (𝐴𝐽))‘𝑡) = (bits‘((𝐴𝐽)‘𝑡)))
74 fvres 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡𝐽 → ((𝐴𝐽)‘𝑡) = (𝐴𝑡))
7574fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐽 → (bits‘((𝐴𝐽)‘𝑡)) = (bits‘(𝐴𝑡)))
7675adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡𝐽) → (bits‘((𝐴𝐽)‘𝑡)) = (bits‘(𝐴𝑡)))
7773, 76eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡𝐽) → ((bits ∘ (𝐴𝐽))‘𝑡) = (bits‘(𝐴𝑡)))
7877eleq2d 2823 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡𝐽) → (𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡) ↔ 𝑛 ∈ (bits‘(𝐴𝑡))))
7978pm5.32da 579 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝑇𝑅) → ((𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡)) ↔ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))))
8079opabbidv 5171 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝑇𝑅) → {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))} = {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))})
8180eleq2d 2823 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝑇𝑅) → (𝑤 ∈ {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))} ↔ 𝑤 ∈ {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))}))
82 elopab 5484 . . . . . . . . . . . . . . 15 (𝑤 ∈ {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))} ↔ ∃𝑡𝑛(𝑤 = ⟨𝑡, 𝑛⟩ ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))))
8381, 82bitrdi 286 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑇𝑅) → (𝑤 ∈ {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))} ↔ ∃𝑡𝑛(𝑤 = ⟨𝑡, 𝑛⟩ ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))))))
84 ancom 461 . . . . . . . . . . . . . . . . 17 ((𝑤 = ⟨𝑡, 𝑛⟩ ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ↔ ((𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))) ∧ 𝑤 = ⟨𝑡, 𝑛⟩))
85 anass 469 . . . . . . . . . . . . . . . . 17 (((𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))) ∧ 𝑤 = ⟨𝑡, 𝑛⟩) ↔ (𝑡𝐽 ∧ (𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
8684, 85bitri 274 . . . . . . . . . . . . . . . 16 ((𝑤 = ⟨𝑡, 𝑛⟩ ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ↔ (𝑡𝐽 ∧ (𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
87862exbii 1851 . . . . . . . . . . . . . . 15 (∃𝑡𝑛(𝑤 = ⟨𝑡, 𝑛⟩ ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ↔ ∃𝑡𝑛(𝑡𝐽 ∧ (𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
88 df-rex 3074 . . . . . . . . . . . . . . . . . 18 (∃𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩ ↔ ∃𝑛(𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩))
8988anbi2i 623 . . . . . . . . . . . . . . . . 17 ((𝑡𝐽 ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩) ↔ (𝑡𝐽 ∧ ∃𝑛(𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
9089exbii 1850 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡𝐽 ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩) ↔ ∃𝑡(𝑡𝐽 ∧ ∃𝑛(𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
91 df-rex 3074 . . . . . . . . . . . . . . . 16 (∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩ ↔ ∃𝑡(𝑡𝐽 ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩))
92 exdistr 1958 . . . . . . . . . . . . . . . 16 (∃𝑡𝑛(𝑡𝐽 ∧ (𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)) ↔ ∃𝑡(𝑡𝐽 ∧ ∃𝑛(𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
9390, 91, 923bitr4i 302 . . . . . . . . . . . . . . 15 (∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩ ↔ ∃𝑡𝑛(𝑡𝐽 ∧ (𝑛 ∈ (bits‘(𝐴𝑡)) ∧ 𝑤 = ⟨𝑡, 𝑛⟩)))
9487, 93bitr4i 277 . . . . . . . . . . . . . 14 (∃𝑡𝑛(𝑤 = ⟨𝑡, 𝑛⟩ ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ↔ ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩)
9583, 94bitrdi 286 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑇𝑅) → (𝑤 ∈ {⟨𝑡, 𝑛⟩ ∣ (𝑡𝐽𝑛 ∈ ((bits ∘ (𝐴𝐽))‘𝑡))} ↔ ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩))
9657, 95bitrd 278 . . . . . . . . . . . 12 (𝐴 ∈ (𝑇𝑅) → (𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽))) ↔ ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩))
9796biimpa 477 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) → ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩)
9897adantlr 713 . . . . . . . . . 10 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) → ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩)
99 fveq2 6842 . . . . . . . . . . . . . 14 (𝑤 = ⟨𝑡, 𝑛⟩ → (𝐹𝑤) = (𝐹‘⟨𝑡, 𝑛⟩))
10099adantl 482 . . . . . . . . . . . . 13 (((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑤 = ⟨𝑡, 𝑛⟩) → (𝐹𝑤) = (𝐹‘⟨𝑡, 𝑛⟩))
101 bitsss 16306 . . . . . . . . . . . . . . . . 17 (bits‘(𝐴𝑡)) ⊆ ℕ0
102101sseli 3940 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (bits‘(𝐴𝑡)) → 𝑛 ∈ ℕ0)
103102anim2i 617 . . . . . . . . . . . . . . 15 ((𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))) → (𝑡𝐽𝑛 ∈ ℕ0))
104103ad2antlr 725 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑤 = ⟨𝑡, 𝑛⟩) → (𝑡𝐽𝑛 ∈ ℕ0))
105 opelxp 5669 . . . . . . . . . . . . . . 15 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) ↔ (𝑡𝐽𝑛 ∈ ℕ0))
1064, 5oddpwdcv 32955 . . . . . . . . . . . . . . . 16 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑(2nd ‘⟨𝑡, 𝑛⟩)) · (1st ‘⟨𝑡, 𝑛⟩)))
107 vex 3449 . . . . . . . . . . . . . . . . . . 19 𝑡 ∈ V
108 vex 3449 . . . . . . . . . . . . . . . . . . 19 𝑛 ∈ V
109107, 108op2nd 7930 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨𝑡, 𝑛⟩) = 𝑛
110109oveq2i 7368 . . . . . . . . . . . . . . . . 17 (2↑(2nd ‘⟨𝑡, 𝑛⟩)) = (2↑𝑛)
111107, 108op1st 7929 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑡, 𝑛⟩) = 𝑡
112110, 111oveq12i 7369 . . . . . . . . . . . . . . . 16 ((2↑(2nd ‘⟨𝑡, 𝑛⟩)) · (1st ‘⟨𝑡, 𝑛⟩)) = ((2↑𝑛) · 𝑡)
113106, 112eqtrdi 2792 . . . . . . . . . . . . . . 15 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
114105, 113sylbir 234 . . . . . . . . . . . . . 14 ((𝑡𝐽𝑛 ∈ ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
115104, 114syl 17 . . . . . . . . . . . . 13 (((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑤 = ⟨𝑡, 𝑛⟩) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
116100, 115eqtr2d 2777 . . . . . . . . . . . 12 (((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑤 = ⟨𝑡, 𝑛⟩) → ((2↑𝑛) · 𝑡) = (𝐹𝑤))
117116ex 413 . . . . . . . . . . 11 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑤 = ⟨𝑡, 𝑛⟩ → ((2↑𝑛) · 𝑡) = (𝐹𝑤)))
118117reximdvva 3202 . . . . . . . . . 10 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) → (∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))𝑤 = ⟨𝑡, 𝑛⟩ → ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤)))
11998, 118mpd 15 . . . . . . . . 9 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) → ∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤))
120 ssrexv 4011 . . . . . . . . 9 (𝐽 ⊆ ℕ → (∃𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤)))
12137, 119, 120mpsyl 68 . . . . . . . 8 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤))
122121adantr 481 . . . . . . 7 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝐹𝑤) = 𝐵) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤))
123 eqeq2 2748 . . . . . . . . . 10 ((𝐹𝑤) = 𝐵 → (((2↑𝑛) · 𝑡) = (𝐹𝑤) ↔ ((2↑𝑛) · 𝑡) = 𝐵))
124123rexbidv 3175 . . . . . . . . 9 ((𝐹𝑤) = 𝐵 → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵))
125124adantl 482 . . . . . . . 8 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝐹𝑤) = 𝐵) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵))
126125rexbidv 3175 . . . . . . 7 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝐹𝑤) = 𝐵) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = (𝐹𝑤) ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵))
127122, 126mpbid 231 . . . . . 6 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))) ∧ (𝐹𝑤) = 𝐵) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵)
128127r19.29an 3155 . . . . 5 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵)
129 simp-5l 783 . . . . . . . 8 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝐴 ∈ (𝑇𝑅))
130 simpllr 774 . . . . . . . 8 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑥𝐽)
131 simplr 767 . . . . . . . . 9 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑦 ∈ (bits‘(𝐴𝑥)))
13268eleq2d 2823 . . . . . . . . . . . . . 14 ((𝐴𝐽):𝐽⟶ℕ0 → (𝑥 ∈ dom (𝐴𝐽) ↔ 𝑥𝐽))
13367, 132syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑇𝑅) → (𝑥 ∈ dom (𝐴𝐽) ↔ 𝑥𝐽))
134133biimpar 478 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑥𝐽) → 𝑥 ∈ dom (𝐴𝐽))
135 fvco 6939 . . . . . . . . . . . 12 ((Fun (𝐴𝐽) ∧ 𝑥 ∈ dom (𝐴𝐽)) → ((bits ∘ (𝐴𝐽))‘𝑥) = (bits‘((𝐴𝐽)‘𝑥)))
13665, 134, 135syl2an2r 683 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑥𝐽) → ((bits ∘ (𝐴𝐽))‘𝑥) = (bits‘((𝐴𝐽)‘𝑥)))
137 fvres 6861 . . . . . . . . . . . . 13 (𝑥𝐽 → ((𝐴𝐽)‘𝑥) = (𝐴𝑥))
138137fveq2d 6846 . . . . . . . . . . . 12 (𝑥𝐽 → (bits‘((𝐴𝐽)‘𝑥)) = (bits‘(𝐴𝑥)))
139138adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑥𝐽) → (bits‘((𝐴𝐽)‘𝑥)) = (bits‘(𝐴𝑥)))
140136, 139eqtrd 2776 . . . . . . . . . 10 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑥𝐽) → ((bits ∘ (𝐴𝐽))‘𝑥) = (bits‘(𝐴𝑥)))
141129, 130, 140syl2anc 584 . . . . . . . . 9 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ((bits ∘ (𝐴𝐽))‘𝑥) = (bits‘(𝐴𝑥)))
142131, 141eleqtrrd 2841 . . . . . . . 8 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))
14348eleq2d 2823 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) → (⟨𝑥, 𝑦⟩ ∈ (𝑀‘(bits ∘ (𝐴𝐽))) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))}))
144 opabidw 5481 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))} ↔ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥)))
145143, 144bitrdi 286 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → (⟨𝑥, 𝑦⟩ ∈ (𝑀‘(bits ∘ (𝐴𝐽))) ↔ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))))
146145biimpar 478 . . . . . . . 8 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑥𝐽𝑦 ∈ ((bits ∘ (𝐴𝐽))‘𝑥))) → ⟨𝑥, 𝑦⟩ ∈ (𝑀‘(bits ∘ (𝐴𝐽))))
147129, 130, 142, 146syl12anc 835 . . . . . . 7 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑀‘(bits ∘ (𝐴𝐽))))
148 simpr 485 . . . . . . . 8 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ((2↑𝑦) · 𝑥) = 𝐵)
14934ad4antr 730 . . . . . . . . 9 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → (𝑀‘(bits ∘ (𝐴𝐽))) ⊆ (𝐽 × ℕ0))
150149, 147sseldd 3945 . . . . . . . 8 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐽 × ℕ0))
151 opeq1 4830 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ⟨𝑡, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
152151eleq1d 2822 . . . . . . . . . . 11 (𝑡 = 𝑥 → (⟨𝑡, 𝑦⟩ ∈ (𝐽 × ℕ0) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐽 × ℕ0)))
153151fveq2d 6846 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝐹‘⟨𝑡, 𝑦⟩) = (𝐹‘⟨𝑥, 𝑦⟩))
154 oveq2 7365 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((2↑𝑦) · 𝑡) = ((2↑𝑦) · 𝑥))
155153, 154eqeq12d 2752 . . . . . . . . . . 11 (𝑡 = 𝑥 → ((𝐹‘⟨𝑡, 𝑦⟩) = ((2↑𝑦) · 𝑡) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = ((2↑𝑦) · 𝑥)))
156152, 155imbi12d 344 . . . . . . . . . 10 (𝑡 = 𝑥 → ((⟨𝑡, 𝑦⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑦⟩) = ((2↑𝑦) · 𝑡)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑥, 𝑦⟩) = ((2↑𝑦) · 𝑥))))
157 opeq2 4831 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → ⟨𝑡, 𝑛⟩ = ⟨𝑡, 𝑦⟩)
158157eleq1d 2822 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) ↔ ⟨𝑡, 𝑦⟩ ∈ (𝐽 × ℕ0)))
159157fveq2d 6846 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (𝐹‘⟨𝑡, 𝑛⟩) = (𝐹‘⟨𝑡, 𝑦⟩))
160 oveq2 7365 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → (2↑𝑛) = (2↑𝑦))
161160oveq1d 7372 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → ((2↑𝑛) · 𝑡) = ((2↑𝑦) · 𝑡))
162159, 161eqeq12d 2752 . . . . . . . . . . . 12 (𝑛 = 𝑦 → ((𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡) ↔ (𝐹‘⟨𝑡, 𝑦⟩) = ((2↑𝑦) · 𝑡)))
163158, 162imbi12d 344 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡)) ↔ (⟨𝑡, 𝑦⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑦⟩) = ((2↑𝑦) · 𝑡))))
164163, 113chvarvv 2002 . . . . . . . . . 10 (⟨𝑡, 𝑦⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑦⟩) = ((2↑𝑦) · 𝑡))
165156, 164chvarvv 2002 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑥, 𝑦⟩) = ((2↑𝑦) · 𝑥))
166 eqeq2 2748 . . . . . . . . . 10 (((2↑𝑦) · 𝑥) = 𝐵 → ((𝐹‘⟨𝑥, 𝑦⟩) = ((2↑𝑦) · 𝑥) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝐵))
167166biimpa 477 . . . . . . . . 9 ((((2↑𝑦) · 𝑥) = 𝐵 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = ((2↑𝑦) · 𝑥)) → (𝐹‘⟨𝑥, 𝑦⟩) = 𝐵)
168165, 167sylan2 593 . . . . . . . 8 ((((2↑𝑦) · 𝑥) = 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐽 × ℕ0)) → (𝐹‘⟨𝑥, 𝑦⟩) = 𝐵)
169148, 150, 168syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → (𝐹‘⟨𝑥, 𝑦⟩) = 𝐵)
170 fveqeq2 6851 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑤) = 𝐵 ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝐵))
171170rspcev 3581 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝑀‘(bits ∘ (𝐴𝐽))) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝐵) → ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵)
172147, 169, 171syl2anc 584 . . . . . 6 ((((((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥𝐽) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵)
173 oveq2 7365 . . . . . . . . . . 11 (𝑡 = 𝑥 → ((2↑𝑛) · 𝑡) = ((2↑𝑛) · 𝑥))
174173eqeq1d 2738 . . . . . . . . . 10 (𝑡 = 𝑥 → (((2↑𝑛) · 𝑡) = 𝐵 ↔ ((2↑𝑛) · 𝑥) = 𝐵))
175160oveq1d 7372 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((2↑𝑛) · 𝑥) = ((2↑𝑦) · 𝑥))
176175eqeq1d 2738 . . . . . . . . . 10 (𝑛 = 𝑦 → (((2↑𝑛) · 𝑥) = 𝐵 ↔ ((2↑𝑦) · 𝑥) = 𝐵))
177174, 176sylan9bb 510 . . . . . . . . 9 ((𝑡 = 𝑥𝑛 = 𝑦) → (((2↑𝑛) · 𝑡) = 𝐵 ↔ ((2↑𝑦) · 𝑥) = 𝐵))
178 simpl 483 . . . . . . . . . . 11 ((𝑡 = 𝑥𝑛 = 𝑦) → 𝑡 = 𝑥)
179178fveq2d 6846 . . . . . . . . . 10 ((𝑡 = 𝑥𝑛 = 𝑦) → (𝐴𝑡) = (𝐴𝑥))
180179fveq2d 6846 . . . . . . . . 9 ((𝑡 = 𝑥𝑛 = 𝑦) → (bits‘(𝐴𝑡)) = (bits‘(𝐴𝑥)))
181177, 180cbvrexdva2 3324 . . . . . . . 8 (𝑡 = 𝑥 → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵 ↔ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵))
182181cbvrexvw 3226 . . . . . . 7 (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵 ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)
183 nfv 1917 . . . . . . . . . . . . . 14 𝑦 𝐴 ∈ (𝑇𝑅)
184 nfv 1917 . . . . . . . . . . . . . . 15 𝑦 𝑥 ∈ ℕ
185 nfre1 3268 . . . . . . . . . . . . . . 15 𝑦𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵
186184, 185nfan 1902 . . . . . . . . . . . . . 14 𝑦(𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)
187183, 186nfan 1902 . . . . . . . . . . . . 13 𝑦(𝐴 ∈ (𝑇𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵))
188 simplr 767 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → 𝑥 ∈ ℕ)
18962ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) → (𝐴𝑥) ∈ ℕ0)
190189adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → (𝐴𝑥) ∈ ℕ0)
191 elnn0 12415 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑥) ∈ ℕ0 ↔ ((𝐴𝑥) ∈ ℕ ∨ (𝐴𝑥) = 0))
192190, 191sylib 217 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → ((𝐴𝑥) ∈ ℕ ∨ (𝐴𝑥) = 0))
193 n0i 4293 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (bits‘(𝐴𝑥)) → ¬ (bits‘(𝐴𝑥)) = ∅)
194193adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → ¬ (bits‘(𝐴𝑥)) = ∅)
195 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑥) = 0 → (bits‘(𝐴𝑥)) = (bits‘0))
196 0bits 16319 . . . . . . . . . . . . . . . . . . . 20 (bits‘0) = ∅
197195, 196eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑥) = 0 → (bits‘(𝐴𝑥)) = ∅)
198194, 197nsyl 140 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → ¬ (𝐴𝑥) = 0)
199192, 198olcnd 875 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → (𝐴𝑥) ∈ ℕ)
20058simp3bi 1147 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ⊆ 𝐽)
201200sselda 3944 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑛 ∈ (𝐴 “ ℕ)) → 𝑛𝐽)
202 breq2 5109 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛))
203202notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛))
204203, 4elrab2 3648 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
205204simprbi 497 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝐽 → ¬ 2 ∥ 𝑛)
206201, 205syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑛 ∈ (𝐴 “ ℕ)) → ¬ 2 ∥ 𝑛)
207206ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ (𝑇𝑅) → ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛)
208 ffn 6668 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
209 elpreima 7008 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 Fn ℕ → (𝑛 ∈ (𝐴 “ ℕ) ↔ (𝑛 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ)))
21062, 208, 2093syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ (𝑇𝑅) → (𝑛 ∈ (𝐴 “ ℕ) ↔ (𝑛 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ)))
211210imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ (𝑇𝑅) → ((𝑛 ∈ (𝐴 “ ℕ) → ¬ 2 ∥ 𝑛) ↔ ((𝑛 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ) → ¬ 2 ∥ 𝑛)))
212 impexp 451 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ) → ¬ 2 ∥ 𝑛) ↔ (𝑛 ∈ ℕ → ((𝐴𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛)))
213211, 212bitrdi 286 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (𝑇𝑅) → ((𝑛 ∈ (𝐴 “ ℕ) → ¬ 2 ∥ 𝑛) ↔ (𝑛 ∈ ℕ → ((𝐴𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛))))
214213ralbidv2 3170 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ (𝑇𝑅) → (∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ ℕ ((𝐴𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛)))
215207, 214mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ (𝑇𝑅) → ∀𝑛 ∈ ℕ ((𝐴𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛))
216 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑛 → (𝐴𝑥) = (𝐴𝑛))
217216eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑛 → ((𝐴𝑥) ∈ ℕ ↔ (𝐴𝑛) ∈ ℕ))
218 breq2 5109 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑛 → (2 ∥ 𝑥 ↔ 2 ∥ 𝑛))
219218notbid 317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑛 → (¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑛))
220217, 219imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑛 → (((𝐴𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥) ↔ ((𝐴𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛)))
221220cbvralvw 3225 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ℕ ((𝐴𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥) ↔ ∀𝑛 ∈ ℕ ((𝐴𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛))
222215, 221sylibr 233 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (𝑇𝑅) → ∀𝑥 ∈ ℕ ((𝐴𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥))
223222r19.21bi 3234 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) → ((𝐴𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥))
224223imp 407 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ (𝐴𝑥) ∈ ℕ) → ¬ 2 ∥ 𝑥)
225199, 224syldan 591 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → ¬ 2 ∥ 𝑥)
226 breq2 5109 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
227226notbid 317 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
228227, 4elrab2 3648 . . . . . . . . . . . . . . . 16 (𝑥𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
229188, 225, 228sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → 𝑥𝐽)
230229adantlrr 719 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) → 𝑥𝐽)
231230adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝑇𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)) ∧ 𝑦 ∈ (bits‘(𝐴𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑥𝐽)
232 simprr 771 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)) → ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)
233187, 231, 232r19.29af 3251 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)) → 𝑥𝐽)
234233, 232jca 512 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)) → (𝑥𝐽 ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵))
235234ex 413 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) → ((𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵) → (𝑥𝐽 ∧ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)))
236235reximdv2 3161 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → (∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵 → ∃𝑥𝐽𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵))
237236imp 407 . . . . . . . 8 ((𝐴 ∈ (𝑇𝑅) ∧ ∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵) → ∃𝑥𝐽𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)
238237adantlr 713 . . . . . . 7 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵) → ∃𝑥𝐽𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)
239182, 238sylan2b 594 . . . . . 6 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) → ∃𝑥𝐽𝑦 ∈ (bits‘(𝐴𝑥))((2↑𝑦) · 𝑥) = 𝐵)
240172, 239r19.29vva 3207 . . . . 5 (((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵) → ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵)
241128, 240impbida 799 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → (∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴𝐽)))(𝐹𝑤) = 𝐵 ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵))
24236, 241bitrd 278 . . 3 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵))
243242ifbid 4509 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → if(𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))), 1, 0) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵, 1, 0))
24413, 23, 2433eqtrd 2780 1 ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → ((𝐺𝐴)‘𝐵) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560  cop 4592   class class class wbr 5105  {copab 5167  cmpt 5188   × cxp 5631  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  ccom 5637  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920   supp csupp 8092  m cmap 8765  Fincfn 8883  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  cn 12153  2c2 12208  0cn0 12413  cexp 13967  Σcsu 15570  cdvds 16136  bitscbits 16299  𝟭cind 32609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-bits 16302  df-ind 32610
This theorem is referenced by:  eulerpartlemgs2  32980
  Copyright terms: Public domain W3C validator