| Step | Hyp | Ref
| Expression |
| 1 | | eulerpart.p |
. . . . 5
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| 2 | | eulerpart.o |
. . . . 5
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| 3 | | eulerpart.d |
. . . . 5
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| 4 | | eulerpart.j |
. . . . 5
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 5 | | eulerpart.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
| 6 | | eulerpart.h |
. . . . 5
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
| 7 | | eulerpart.m |
. . . . 5
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| 8 | | eulerpart.r |
. . . . 5
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 9 | | eulerpart.t |
. . . . 5
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| 10 | | eulerpart.g |
. . . . 5
⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | eulerpartlemgv 34375 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
| 12 | 11 | fveq1d 6908 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝐺‘𝐴)‘𝐵) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))‘𝐵)) |
| 13 | 12 | adantr 480 |
. 2
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → ((𝐺‘𝐴)‘𝐵) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))‘𝐵)) |
| 14 | | nnex 12272 |
. . 3
⊢ ℕ
∈ V |
| 15 | | imassrn 6089 |
. . . 4
⊢ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ⊆ ran 𝐹 |
| 16 | 4, 5 | oddpwdc 34356 |
. . . . 5
⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| 17 | | f1of 6848 |
. . . . 5
⊢ (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 ×
ℕ0)⟶ℕ) |
| 18 | | frn 6743 |
. . . . 5
⊢ (𝐹:(𝐽 × ℕ0)⟶ℕ
→ ran 𝐹 ⊆
ℕ) |
| 19 | 16, 17, 18 | mp2b 10 |
. . . 4
⊢ ran 𝐹 ⊆
ℕ |
| 20 | 15, 19 | sstri 3993 |
. . 3
⊢ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ⊆ ℕ |
| 21 | | simpr 484 |
. . 3
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ) |
| 22 | | indfval 32841 |
. . 3
⊢ ((ℕ
∈ V ∧ (𝐹 “
(𝑀‘(bits ∘
(𝐴 ↾ 𝐽)))) ⊆ ℕ ∧ 𝐵 ∈ ℕ) →
(((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))‘𝐵) = if(𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))), 1, 0)) |
| 23 | 14, 20, 21, 22 | mp3an12i 1467 |
. 2
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) →
(((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))‘𝐵) = if(𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))), 1, 0)) |
| 24 | | ffn 6736 |
. . . . . 6
⊢ (𝐹:(𝐽 × ℕ0)⟶ℕ
→ 𝐹 Fn (𝐽 ×
ℕ0)) |
| 25 | 16, 17, 24 | mp2b 10 |
. . . . 5
⊢ 𝐹 Fn (𝐽 ×
ℕ0) |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | eulerpartlemmf 34377 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (bits ∘ (𝐴 ↾ 𝐽)) ∈ 𝐻) |
| 27 | 1, 2, 3, 4, 5, 6, 7 | eulerpartlem1 34369 |
. . . . . . . . . . 11
⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
| 28 | | f1of 6848 |
. . . . . . . . . . 11
⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
→ 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 29 | 27, 28 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩
Fin) |
| 30 | 29 | ffvelcdmi 7103 |
. . . . . . . . 9
⊢ ((bits
∘ (𝐴 ↾ 𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 31 | 26, 30 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 32 | 31 | elin1d 4204 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ 𝒫 (𝐽 ×
ℕ0)) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ 𝒫 (𝐽 ×
ℕ0)) |
| 34 | 33 | elpwid 4609 |
. . . . 5
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ⊆ (𝐽 ×
ℕ0)) |
| 35 | | fvelimab 6981 |
. . . . 5
⊢ ((𝐹 Fn (𝐽 × ℕ0) ∧ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ⊆ (𝐽 × ℕ0)) → (𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ↔ ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵)) |
| 36 | 25, 34, 35 | sylancr 587 |
. . . 4
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ↔ ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵)) |
| 37 | 4 | ssrab3 4082 |
. . . . . . . . 9
⊢ 𝐽 ⊆
ℕ |
| 38 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = (bits ∘ (𝐴 ↾ 𝐽)) → (𝑟‘𝑥) = ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)) |
| 39 | 38 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = (bits ∘ (𝐴 ↾ 𝐽)) → (𝑦 ∈ (𝑟‘𝑥) ↔ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))) |
| 40 | 39 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = (bits ∘ (𝐴 ↾ 𝐽)) → ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥)) ↔ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)))) |
| 41 | 40 | opabbidv 5209 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = (bits ∘ (𝐴 ↾ 𝐽)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))}) |
| 42 | 14, 37 | ssexi 5322 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐽 ∈ V |
| 43 | | abid2 2879 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑦 ∣ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)} = ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) |
| 44 | 43 | fvexi 6920 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∣ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)} ∈ V |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐽 → {𝑦 ∣ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)} ∈ V) |
| 46 | 42, 45 | opabex3 7992 |
. . . . . . . . . . . . . . . . 17
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))} ∈ V |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))} ∈ V) |
| 48 | 7, 41, 26, 47 | fvmptd3 7039 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))}) |
| 49 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑛) → 𝑥 = 𝑡) |
| 50 | 49 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑛) → (𝑥 ∈ 𝐽 ↔ 𝑡 ∈ 𝐽)) |
| 51 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑛) → 𝑦 = 𝑛) |
| 52 | 49 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑛) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) = ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡)) |
| 53 | 51, 52 | eleq12d 2835 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑛) → (𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) ↔ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))) |
| 54 | 50, 53 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑛) → ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)) ↔ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡)))) |
| 55 | 54 | cbvopabv 5216 |
. . . . . . . . . . . . . . 15
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))} = {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))} |
| 56 | 48, 55 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) = {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))}) |
| 57 | 56 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ↔ 𝑤 ∈ {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))})) |
| 58 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | eulerpartlemt0 34371 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0
↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| 59 | 58 | simp1bi 1146 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴 ∈ (ℕ0
↑m ℕ)) |
| 60 | | nn0ex 12532 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 ∈ V |
| 61 | 60, 14 | elmap 8911 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ (ℕ0
↑m ℕ) ↔ 𝐴:ℕ⟶ℕ0) |
| 62 | 59, 61 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 63 | | ffun 6739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 →
Fun 𝐴) |
| 64 | | funres 6608 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
𝐴 → Fun (𝐴 ↾ 𝐽)) |
| 65 | 62, 63, 64 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Fun (𝐴 ↾ 𝐽)) |
| 66 | | fssres 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝐽 ⊆ ℕ) →
(𝐴 ↾ 𝐽):𝐽⟶ℕ0) |
| 67 | 62, 37, 66 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐴 ↾ 𝐽):𝐽⟶ℕ0) |
| 68 | | fdm 6745 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ↾ 𝐽):𝐽⟶ℕ0 → dom
(𝐴 ↾ 𝐽) = 𝐽) |
| 69 | 68 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ↾ 𝐽):𝐽⟶ℕ0 → (𝑡 ∈ dom (𝐴 ↾ 𝐽) ↔ 𝑡 ∈ 𝐽)) |
| 70 | 67, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑡 ∈ dom (𝐴 ↾ 𝐽) ↔ 𝑡 ∈ 𝐽)) |
| 71 | 70 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ 𝐽) → 𝑡 ∈ dom (𝐴 ↾ 𝐽)) |
| 72 | | fvco 7007 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝐴 ↾ 𝐽) ∧ 𝑡 ∈ dom (𝐴 ↾ 𝐽)) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡) = (bits‘((𝐴 ↾ 𝐽)‘𝑡))) |
| 73 | 65, 71, 72 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ 𝐽) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡) = (bits‘((𝐴 ↾ 𝐽)‘𝑡))) |
| 74 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ 𝐽 → ((𝐴 ↾ 𝐽)‘𝑡) = (𝐴‘𝑡)) |
| 75 | 74 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ 𝐽 → (bits‘((𝐴 ↾ 𝐽)‘𝑡)) = (bits‘(𝐴‘𝑡))) |
| 76 | 75 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ 𝐽) → (bits‘((𝐴 ↾ 𝐽)‘𝑡)) = (bits‘(𝐴‘𝑡))) |
| 77 | 73, 76 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ 𝐽) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡) = (bits‘(𝐴‘𝑡))) |
| 78 | 77 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ 𝐽) → (𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡) ↔ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) |
| 79 | 78 | pm5.32da 579 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡)) ↔ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡))))) |
| 80 | 79 | opabbidv 5209 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))} = {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))}) |
| 81 | 80 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑤 ∈ {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))} ↔ 𝑤 ∈ {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))})) |
| 82 | | elopab 5532 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))} ↔ ∃𝑡∃𝑛(𝑤 = 〈𝑡, 𝑛〉 ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡))))) |
| 83 | 81, 82 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑤 ∈ {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))} ↔ ∃𝑡∃𝑛(𝑤 = 〈𝑡, 𝑛〉 ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))))) |
| 84 | | ancom 460 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 = 〈𝑡, 𝑛〉 ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ↔ ((𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡))) ∧ 𝑤 = 〈𝑡, 𝑛〉)) |
| 85 | | anass 468 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡))) ∧ 𝑤 = 〈𝑡, 𝑛〉) ↔ (𝑡 ∈ 𝐽 ∧ (𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 86 | 84, 85 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 = 〈𝑡, 𝑛〉 ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ↔ (𝑡 ∈ 𝐽 ∧ (𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 87 | 86 | 2exbii 1849 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡∃𝑛(𝑤 = 〈𝑡, 𝑛〉 ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ↔ ∃𝑡∃𝑛(𝑡 ∈ 𝐽 ∧ (𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 88 | | df-rex 3071 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑛 ∈
(bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉 ↔ ∃𝑛(𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉)) |
| 89 | 88 | anbi2i 623 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∈ 𝐽 ∧ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉) ↔ (𝑡 ∈ 𝐽 ∧ ∃𝑛(𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 90 | 89 | exbii 1848 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑡(𝑡 ∈ 𝐽 ∧ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉) ↔ ∃𝑡(𝑡 ∈ 𝐽 ∧ ∃𝑛(𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 91 | | df-rex 3071 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑡 ∈
𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉 ↔ ∃𝑡(𝑡 ∈ 𝐽 ∧ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉)) |
| 92 | | exdistr 1954 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑡∃𝑛(𝑡 ∈ 𝐽 ∧ (𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉)) ↔ ∃𝑡(𝑡 ∈ 𝐽 ∧ ∃𝑛(𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 93 | 90, 91, 92 | 3bitr4i 303 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡 ∈
𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉 ↔ ∃𝑡∃𝑛(𝑡 ∈ 𝐽 ∧ (𝑛 ∈ (bits‘(𝐴‘𝑡)) ∧ 𝑤 = 〈𝑡, 𝑛〉))) |
| 94 | 87, 93 | bitr4i 278 |
. . . . . . . . . . . . . 14
⊢
(∃𝑡∃𝑛(𝑤 = 〈𝑡, 𝑛〉 ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ↔ ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉) |
| 95 | 83, 94 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑤 ∈ {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑡))} ↔ ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉)) |
| 96 | 57, 95 | bitrd 279 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ↔ ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉)) |
| 97 | 96 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) → ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉) |
| 98 | 97 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) → ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉) |
| 99 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 〈𝑡, 𝑛〉 → (𝐹‘𝑤) = (𝐹‘〈𝑡, 𝑛〉)) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ∧ 𝑤 = 〈𝑡, 𝑛〉) → (𝐹‘𝑤) = (𝐹‘〈𝑡, 𝑛〉)) |
| 101 | | bitsss 16463 |
. . . . . . . . . . . . . . . . 17
⊢
(bits‘(𝐴‘𝑡)) ⊆
ℕ0 |
| 102 | 101 | sseli 3979 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (bits‘(𝐴‘𝑡)) → 𝑛 ∈ ℕ0) |
| 103 | 102 | anim2i 617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡))) → (𝑡 ∈ 𝐽 ∧ 𝑛 ∈
ℕ0)) |
| 104 | 103 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ∧ 𝑤 = 〈𝑡, 𝑛〉) → (𝑡 ∈ 𝐽 ∧ 𝑛 ∈
ℕ0)) |
| 105 | | opelxp 5721 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑡, 𝑛〉 ∈ (𝐽 × ℕ0) ↔ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈
ℕ0)) |
| 106 | 4, 5 | oddpwdcv 34357 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑡, 𝑛〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑡, 𝑛〉) = ((2↑(2nd
‘〈𝑡, 𝑛〉)) ·
(1st ‘〈𝑡, 𝑛〉))) |
| 107 | | vex 3484 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑡 ∈ V |
| 108 | | vex 3484 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑛 ∈ V |
| 109 | 107, 108 | op2nd 8023 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈𝑡, 𝑛〉) = 𝑛 |
| 110 | 109 | oveq2i 7442 |
. . . . . . . . . . . . . . . . 17
⊢
(2↑(2nd ‘〈𝑡, 𝑛〉)) = (2↑𝑛) |
| 111 | 107, 108 | op1st 8022 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘〈𝑡, 𝑛〉) = 𝑡 |
| 112 | 110, 111 | oveq12i 7443 |
. . . . . . . . . . . . . . . 16
⊢
((2↑(2nd ‘〈𝑡, 𝑛〉)) · (1st
‘〈𝑡, 𝑛〉)) = ((2↑𝑛) · 𝑡) |
| 113 | 106, 112 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑡, 𝑛〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑡, 𝑛〉) = ((2↑𝑛) · 𝑡)) |
| 114 | 105, 113 | sylbir 235 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0) → (𝐹‘〈𝑡, 𝑛〉) = ((2↑𝑛) · 𝑡)) |
| 115 | 104, 114 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ∧ 𝑤 = 〈𝑡, 𝑛〉) → (𝐹‘〈𝑡, 𝑛〉) = ((2↑𝑛) · 𝑡)) |
| 116 | 100, 115 | eqtr2d 2778 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) ∧ 𝑤 = 〈𝑡, 𝑛〉) → ((2↑𝑛) · 𝑡) = (𝐹‘𝑤)) |
| 117 | 116 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝑡 ∈ 𝐽 ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → (𝑤 = 〈𝑡, 𝑛〉 → ((2↑𝑛) · 𝑡) = (𝐹‘𝑤))) |
| 118 | 117 | reximdvva 3207 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) → (∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))𝑤 = 〈𝑡, 𝑛〉 → ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤))) |
| 119 | 98, 118 | mpd 15 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) → ∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤)) |
| 120 | | ssrexv 4053 |
. . . . . . . . 9
⊢ (𝐽 ⊆ ℕ →
(∃𝑡 ∈ 𝐽 ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤))) |
| 121 | 37, 119, 120 | mpsyl 68 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤)) |
| 122 | 121 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝐹‘𝑤) = 𝐵) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤)) |
| 123 | | eqeq2 2749 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑤) = 𝐵 → (((2↑𝑛) · 𝑡) = (𝐹‘𝑤) ↔ ((2↑𝑛) · 𝑡) = 𝐵)) |
| 124 | 123 | rexbidv 3179 |
. . . . . . . . 9
⊢ ((𝐹‘𝑤) = 𝐵 → (∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤) ↔ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵)) |
| 125 | 124 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝐹‘𝑤) = 𝐵) → (∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤) ↔ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵)) |
| 126 | 125 | rexbidv 3179 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝐹‘𝑤) = 𝐵) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = (𝐹‘𝑤) ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵)) |
| 127 | 122, 126 | mpbid 232 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ 𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∧ (𝐹‘𝑤) = 𝐵) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) |
| 128 | 127 | r19.29an 3158 |
. . . . 5
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) |
| 129 | | simp-5l 785 |
. . . . . . . 8
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝐴 ∈ (𝑇 ∩ 𝑅)) |
| 130 | | simpllr 776 |
. . . . . . . 8
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑥 ∈ 𝐽) |
| 131 | | simplr 769 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑦 ∈ (bits‘(𝐴‘𝑥))) |
| 132 | 68 | eleq2d 2827 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ↾ 𝐽):𝐽⟶ℕ0 → (𝑥 ∈ dom (𝐴 ↾ 𝐽) ↔ 𝑥 ∈ 𝐽)) |
| 133 | 67, 132 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑥 ∈ dom (𝐴 ↾ 𝐽) ↔ 𝑥 ∈ 𝐽)) |
| 134 | 133 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ dom (𝐴 ↾ 𝐽)) |
| 135 | | fvco 7007 |
. . . . . . . . . . . 12
⊢ ((Fun
(𝐴 ↾ 𝐽) ∧ 𝑥 ∈ dom (𝐴 ↾ 𝐽)) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) = (bits‘((𝐴 ↾ 𝐽)‘𝑥))) |
| 136 | 65, 134, 135 | syl2an2r 685 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ 𝐽) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) = (bits‘((𝐴 ↾ 𝐽)‘𝑥))) |
| 137 | | fvres 6925 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐽 → ((𝐴 ↾ 𝐽)‘𝑥) = (𝐴‘𝑥)) |
| 138 | 137 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐽 → (bits‘((𝐴 ↾ 𝐽)‘𝑥)) = (bits‘(𝐴‘𝑥))) |
| 139 | 138 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ 𝐽) → (bits‘((𝐴 ↾ 𝐽)‘𝑥)) = (bits‘(𝐴‘𝑥))) |
| 140 | 136, 139 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ 𝐽) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) = (bits‘(𝐴‘𝑥))) |
| 141 | 129, 130,
140 | syl2anc 584 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥) = (bits‘(𝐴‘𝑥))) |
| 142 | 131, 141 | eleqtrrd 2844 |
. . . . . . . 8
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)) |
| 143 | 48 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (〈𝑥, 𝑦〉 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))})) |
| 144 | | opabidw 5529 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))} ↔ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))) |
| 145 | 143, 144 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (〈𝑥, 𝑦〉 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ↔ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥)))) |
| 146 | 145 | biimpar 477 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ((bits ∘ (𝐴 ↾ 𝐽))‘𝑥))) → 〈𝑥, 𝑦〉 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
| 147 | 129, 130,
142, 146 | syl12anc 837 |
. . . . . . 7
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
| 148 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ((2↑𝑦) · 𝑥) = 𝐵) |
| 149 | 34 | ad4antr 732 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ⊆ (𝐽 ×
ℕ0)) |
| 150 | 149, 147 | sseldd 3984 |
. . . . . . . 8
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐽 ×
ℕ0)) |
| 151 | | opeq1 4873 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → 〈𝑡, 𝑦〉 = 〈𝑥, 𝑦〉) |
| 152 | 151 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑥 → (〈𝑡, 𝑦〉 ∈ (𝐽 × ℕ0) ↔
〈𝑥, 𝑦〉 ∈ (𝐽 ×
ℕ0))) |
| 153 | 151 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → (𝐹‘〈𝑡, 𝑦〉) = (𝐹‘〈𝑥, 𝑦〉)) |
| 154 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → ((2↑𝑦) · 𝑡) = ((2↑𝑦) · 𝑥)) |
| 155 | 153, 154 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑥 → ((𝐹‘〈𝑡, 𝑦〉) = ((2↑𝑦) · 𝑡) ↔ (𝐹‘〈𝑥, 𝑦〉) = ((2↑𝑦) · 𝑥))) |
| 156 | 152, 155 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑥 → ((〈𝑡, 𝑦〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑡, 𝑦〉) = ((2↑𝑦) · 𝑡)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑥, 𝑦〉) = ((2↑𝑦) · 𝑥)))) |
| 157 | | opeq2 4874 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → 〈𝑡, 𝑛〉 = 〈𝑡, 𝑦〉) |
| 158 | 157 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑦 → (〈𝑡, 𝑛〉 ∈ (𝐽 × ℕ0) ↔
〈𝑡, 𝑦〉 ∈ (𝐽 ×
ℕ0))) |
| 159 | 157 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → (𝐹‘〈𝑡, 𝑛〉) = (𝐹‘〈𝑡, 𝑦〉)) |
| 160 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑦 → (2↑𝑛) = (2↑𝑦)) |
| 161 | 160 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → ((2↑𝑛) · 𝑡) = ((2↑𝑦) · 𝑡)) |
| 162 | 159, 161 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑦 → ((𝐹‘〈𝑡, 𝑛〉) = ((2↑𝑛) · 𝑡) ↔ (𝐹‘〈𝑡, 𝑦〉) = ((2↑𝑦) · 𝑡))) |
| 163 | 158, 162 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → ((〈𝑡, 𝑛〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑡, 𝑛〉) = ((2↑𝑛) · 𝑡)) ↔ (〈𝑡, 𝑦〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑡, 𝑦〉) = ((2↑𝑦) · 𝑡)))) |
| 164 | 163, 113 | chvarvv 1998 |
. . . . . . . . . 10
⊢
(〈𝑡, 𝑦〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑡, 𝑦〉) = ((2↑𝑦) · 𝑡)) |
| 165 | 156, 164 | chvarvv 1998 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝐽 × ℕ0) → (𝐹‘〈𝑥, 𝑦〉) = ((2↑𝑦) · 𝑥)) |
| 166 | | eqeq2 2749 |
. . . . . . . . . 10
⊢
(((2↑𝑦)
· 𝑥) = 𝐵 → ((𝐹‘〈𝑥, 𝑦〉) = ((2↑𝑦) · 𝑥) ↔ (𝐹‘〈𝑥, 𝑦〉) = 𝐵)) |
| 167 | 166 | biimpa 476 |
. . . . . . . . 9
⊢
((((2↑𝑦)
· 𝑥) = 𝐵 ∧ (𝐹‘〈𝑥, 𝑦〉) = ((2↑𝑦) · 𝑥)) → (𝐹‘〈𝑥, 𝑦〉) = 𝐵) |
| 168 | 165, 167 | sylan2 593 |
. . . . . . . 8
⊢
((((2↑𝑦)
· 𝑥) = 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ (𝐽 × ℕ0)) → (𝐹‘〈𝑥, 𝑦〉) = 𝐵) |
| 169 | 148, 150,
168 | syl2anc 584 |
. . . . . . 7
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → (𝐹‘〈𝑥, 𝑦〉) = 𝐵) |
| 170 | | fveqeq2 6915 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑤) = 𝐵 ↔ (𝐹‘〈𝑥, 𝑦〉) = 𝐵)) |
| 171 | 170 | rspcev 3622 |
. . . . . . 7
⊢
((〈𝑥, 𝑦〉 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∧ (𝐹‘〈𝑥, 𝑦〉) = 𝐵) → ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵) |
| 172 | 147, 169,
171 | syl2anc 584 |
. . . . . 6
⊢
((((((𝐴 ∈
(𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵) |
| 173 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑥 → ((2↑𝑛) · 𝑡) = ((2↑𝑛) · 𝑥)) |
| 174 | 173 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑥 → (((2↑𝑛) · 𝑡) = 𝐵 ↔ ((2↑𝑛) · 𝑥) = 𝐵)) |
| 175 | 160 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → ((2↑𝑛) · 𝑥) = ((2↑𝑦) · 𝑥)) |
| 176 | 175 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑦 → (((2↑𝑛) · 𝑥) = 𝐵 ↔ ((2↑𝑦) · 𝑥) = 𝐵)) |
| 177 | 174, 176 | sylan9bb 509 |
. . . . . . . . 9
⊢ ((𝑡 = 𝑥 ∧ 𝑛 = 𝑦) → (((2↑𝑛) · 𝑡) = 𝐵 ↔ ((2↑𝑦) · 𝑥) = 𝐵)) |
| 178 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑡 = 𝑥 ∧ 𝑛 = 𝑦) → 𝑡 = 𝑥) |
| 179 | 178 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝑡 = 𝑥 ∧ 𝑛 = 𝑦) → (𝐴‘𝑡) = (𝐴‘𝑥)) |
| 180 | 179 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝑡 = 𝑥 ∧ 𝑛 = 𝑦) → (bits‘(𝐴‘𝑡)) = (bits‘(𝐴‘𝑥))) |
| 181 | 177, 180 | cbvrexdva2 3349 |
. . . . . . . 8
⊢ (𝑡 = 𝑥 → (∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵 ↔ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) |
| 182 | 181 | cbvrexvw 3238 |
. . . . . . 7
⊢
(∃𝑡 ∈
ℕ ∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵 ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) |
| 183 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝐴 ∈ (𝑇 ∩ 𝑅) |
| 184 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦 𝑥 ∈ ℕ |
| 185 | | nfre1 3285 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵 |
| 186 | 184, 185 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑥 ∈ ℕ ∧
∃𝑦 ∈
(bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) |
| 187 | 183, 186 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) |
| 188 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → 𝑥 ∈ ℕ) |
| 189 | 62 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) → (𝐴‘𝑥) ∈
ℕ0) |
| 190 | 189 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → (𝐴‘𝑥) ∈
ℕ0) |
| 191 | | elnn0 12528 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴‘𝑥) ∈ ℕ0 ↔ ((𝐴‘𝑥) ∈ ℕ ∨ (𝐴‘𝑥) = 0)) |
| 192 | 190, 191 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → ((𝐴‘𝑥) ∈ ℕ ∨ (𝐴‘𝑥) = 0)) |
| 193 | | n0i 4340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (bits‘(𝐴‘𝑥)) → ¬ (bits‘(𝐴‘𝑥)) = ∅) |
| 194 | 193 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → ¬ (bits‘(𝐴‘𝑥)) = ∅) |
| 195 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴‘𝑥) = 0 → (bits‘(𝐴‘𝑥)) = (bits‘0)) |
| 196 | | 0bits 16476 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(bits‘0) = ∅ |
| 197 | 195, 196 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴‘𝑥) = 0 → (bits‘(𝐴‘𝑥)) = ∅) |
| 198 | 194, 197 | nsyl 140 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → ¬ (𝐴‘𝑥) = 0) |
| 199 | 192, 198 | olcnd 878 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → (𝐴‘𝑥) ∈ ℕ) |
| 200 | 58 | simp3bi 1148 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡𝐴 “ ℕ) ⊆ 𝐽) |
| 201 | 200 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑛 ∈ (◡𝐴 “ ℕ)) → 𝑛 ∈ 𝐽) |
| 202 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛)) |
| 203 | 202 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛)) |
| 204 | 203, 4 | elrab2 3695 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ 𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛)) |
| 205 | 204 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝐽 → ¬ 2 ∥ 𝑛) |
| 206 | 201, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑛 ∈ (◡𝐴 “ ℕ)) → ¬ 2 ∥
𝑛) |
| 207 | 206 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛) |
| 208 | | ffn 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴:ℕ⟶ℕ0 →
𝐴 Fn
ℕ) |
| 209 | | elpreima 7078 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 Fn ℕ → (𝑛 ∈ (◡𝐴 “ ℕ) ↔ (𝑛 ∈ ℕ ∧ (𝐴‘𝑛) ∈ ℕ))) |
| 210 | 62, 208, 209 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑛 ∈ (◡𝐴 “ ℕ) ↔ (𝑛 ∈ ℕ ∧ (𝐴‘𝑛) ∈ ℕ))) |
| 211 | 210 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝑛 ∈ (◡𝐴 “ ℕ) → ¬ 2 ∥
𝑛) ↔ ((𝑛 ∈ ℕ ∧ (𝐴‘𝑛) ∈ ℕ) → ¬ 2 ∥
𝑛))) |
| 212 | | impexp 450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ℕ ∧ (𝐴‘𝑛) ∈ ℕ) → ¬ 2 ∥
𝑛) ↔ (𝑛 ∈ ℕ → ((𝐴‘𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛))) |
| 213 | 211, 212 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝑛 ∈ (◡𝐴 “ ℕ) → ¬ 2 ∥
𝑛) ↔ (𝑛 ∈ ℕ → ((𝐴‘𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛)))) |
| 214 | 213 | ralbidv2 3174 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ ℕ ((𝐴‘𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛))) |
| 215 | 207, 214 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∀𝑛 ∈ ℕ ((𝐴‘𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛)) |
| 216 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑛 → (𝐴‘𝑥) = (𝐴‘𝑛)) |
| 217 | 216 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑛 → ((𝐴‘𝑥) ∈ ℕ ↔ (𝐴‘𝑛) ∈ ℕ)) |
| 218 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑛 → (2 ∥ 𝑥 ↔ 2 ∥ 𝑛)) |
| 219 | 218 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑛 → (¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑛)) |
| 220 | 217, 219 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑛 → (((𝐴‘𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥) ↔ ((𝐴‘𝑛) ∈ ℕ → ¬ 2 ∥ 𝑛))) |
| 221 | 220 | cbvralvw 3237 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 ∈
ℕ ((𝐴‘𝑥) ∈ ℕ → ¬ 2
∥ 𝑥) ↔
∀𝑛 ∈ ℕ
((𝐴‘𝑛) ∈ ℕ → ¬ 2
∥ 𝑛)) |
| 222 | 215, 221 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∀𝑥 ∈ ℕ ((𝐴‘𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥)) |
| 223 | 222 | r19.21bi 3251 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) → ((𝐴‘𝑥) ∈ ℕ → ¬ 2 ∥ 𝑥)) |
| 224 | 223 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ (𝐴‘𝑥) ∈ ℕ) → ¬ 2 ∥
𝑥) |
| 225 | 199, 224 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → ¬ 2 ∥ 𝑥) |
| 226 | | breq2 5147 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) |
| 227 | 226 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
| 228 | 227, 4 | elrab2 3695 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
| 229 | 188, 225,
228 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → 𝑥 ∈ 𝐽) |
| 230 | 229 | adantlrr 721 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) → 𝑥 ∈ 𝐽) |
| 231 | 230 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) ∧ 𝑦 ∈ (bits‘(𝐴‘𝑥))) ∧ ((2↑𝑦) · 𝑥) = 𝐵) → 𝑥 ∈ 𝐽) |
| 232 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) → ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) |
| 233 | 187, 231,
232 | r19.29af 3268 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) → 𝑥 ∈ 𝐽) |
| 234 | 233, 232 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) → (𝑥 ∈ 𝐽 ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) |
| 235 | 234 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝑥 ∈ ℕ ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) → (𝑥 ∈ 𝐽 ∧ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵))) |
| 236 | 235 | reximdv2 3164 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵 → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵)) |
| 237 | 236 | imp 406 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ ∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) |
| 238 | 237 | adantlr 715 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑥 ∈ ℕ ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) |
| 239 | 182, 238 | sylan2b 594 |
. . . . . 6
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ (bits‘(𝐴‘𝑥))((2↑𝑦) · 𝑥) = 𝐵) |
| 240 | 172, 239 | r19.29vva 3216 |
. . . . 5
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵) → ∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵) |
| 241 | 128, 240 | impbida 801 |
. . . 4
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → (∃𝑤 ∈ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))(𝐹‘𝑤) = 𝐵 ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵)) |
| 242 | 36, 241 | bitrd 279 |
. . 3
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵)) |
| 243 | 242 | ifbid 4549 |
. 2
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → if(𝐵 ∈ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))), 1, 0) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵, 1, 0)) |
| 244 | 13, 23, 243 | 3eqtrd 2781 |
1
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝐵 ∈ ℕ) → ((𝐺‘𝐴)‘𝐵) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝐵, 1, 0)) |