| Step | Hyp | Ref
| Expression |
| 1 | | mreexexlemd.6 |
. 2
⊢ (𝜑 → (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾)) |
| 2 | | mreexexlemd.4 |
. 2
⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 3 | | mreexexlemd.5 |
. 2
⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 4 | | mreexexlemd.7 |
. . . 4
⊢ (𝜑 → ∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼))) |
| 5 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑢 = 𝑓) |
| 6 | 5 | breq1d 5152 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ≈ 𝐾 ↔ 𝑓 ≈ 𝐾)) |
| 7 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑣 = 𝑔) |
| 8 | 7 | breq1d 5152 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑣 ≈ 𝐾 ↔ 𝑔 ≈ 𝐾)) |
| 9 | 6, 8 | orbi12d 918 |
. . . . . . . . 9
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ↔ (𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾))) |
| 10 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑡 = ℎ) |
| 11 | 7, 10 | uneq12d 4168 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑣 ∪ 𝑡) = (𝑔 ∪ ℎ)) |
| 12 | 11 | fveq2d 6909 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑁‘(𝑣 ∪ 𝑡)) = (𝑁‘(𝑔 ∪ ℎ))) |
| 13 | 5, 12 | sseq12d 4016 |
. . . . . . . . 9
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ↔ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)))) |
| 14 | 5, 10 | uneq12d 4168 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ∪ 𝑡) = (𝑓 ∪ ℎ)) |
| 15 | 14 | eleq1d 2825 |
. . . . . . . . 9
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((𝑢 ∪ 𝑡) ∈ 𝐼 ↔ (𝑓 ∪ ℎ) ∈ 𝐼)) |
| 16 | 9, 13, 15 | 3anbi123d 1437 |
. . . . . . . 8
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) ↔ ((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼))) |
| 17 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑢 = 𝑓) |
| 18 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
| 19 | 17, 18 | breq12d 5155 |
. . . . . . . . . 10
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → (𝑢 ≈ 𝑖 ↔ 𝑓 ≈ 𝑗)) |
| 20 | | simplll 774 |
. . . . . . . . . . . 12
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑡 = ℎ) |
| 21 | 18, 20 | uneq12d 4168 |
. . . . . . . . . . 11
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → (𝑖 ∪ 𝑡) = (𝑗 ∪ ℎ)) |
| 22 | 21 | eleq1d 2825 |
. . . . . . . . . 10
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → ((𝑖 ∪ 𝑡) ∈ 𝐼 ↔ (𝑗 ∪ ℎ) ∈ 𝐼)) |
| 23 | 19, 22 | anbi12d 632 |
. . . . . . . . 9
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → ((𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼) ↔ (𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 24 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑣 = 𝑔) |
| 25 | 24 | pweqd 4616 |
. . . . . . . . 9
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝒫 𝑣 = 𝒫 𝑔) |
| 26 | 23, 25 | cbvrexdva2 3348 |
. . . . . . . 8
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼) ↔ ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 27 | 16, 26 | imbi12d 344 |
. . . . . . 7
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ (((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)))) |
| 28 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → 𝑡 = ℎ) |
| 29 | 28 | difeq2d 4125 |
. . . . . . . . 9
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → (𝑋 ∖ 𝑡) = (𝑋 ∖ ℎ)) |
| 30 | 29 | pweqd 4616 |
. . . . . . . 8
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → 𝒫 (𝑋 ∖ 𝑡) = 𝒫 (𝑋 ∖ ℎ)) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝒫 (𝑋 ∖ 𝑡) = 𝒫 (𝑋 ∖ ℎ)) |
| 32 | 27, 31 | cbvraldva2 3347 |
. . . . . 6
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → (∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ ∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)))) |
| 33 | 32, 30 | cbvraldva2 3347 |
. . . . 5
⊢ (𝑡 = ℎ → (∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)))) |
| 34 | 33 | cbvalvw 2034 |
. . . 4
⊢
(∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 35 | 4, 34 | sylib 218 |
. . 3
⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 36 | | ssun2 4178 |
. . . . . 6
⊢ 𝐻 ⊆ (𝐹 ∪ 𝐻) |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐻 ⊆ (𝐹 ∪ 𝐻)) |
| 38 | 3, 37 | ssexd 5323 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ V) |
| 39 | | mreexexlemd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 40 | 39 | difexd 5330 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∖ 𝐻) ∈ V) |
| 41 | | mreexexlemd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 42 | 40, 41 | sselpwd 5327 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
| 43 | 42 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ = 𝐻) → 𝐹 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
| 44 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ = 𝐻) → ℎ = 𝐻) |
| 45 | 44 | difeq2d 4125 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝑋 ∖ ℎ) = (𝑋 ∖ 𝐻)) |
| 46 | 45 | pweqd 4616 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ = 𝐻) → 𝒫 (𝑋 ∖ ℎ) = 𝒫 (𝑋 ∖ 𝐻)) |
| 47 | 43, 46 | eleqtrrd 2843 |
. . . . 5
⊢ ((𝜑 ∧ ℎ = 𝐻) → 𝐹 ∈ 𝒫 (𝑋 ∖ ℎ)) |
| 48 | | mreexexlemd.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 49 | 40, 48 | sselpwd 5327 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
| 50 | 49 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → 𝐺 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
| 51 | 46 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → 𝒫 (𝑋 ∖ ℎ) = 𝒫 (𝑋 ∖ 𝐻)) |
| 52 | 50, 51 | eleqtrrd 2843 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → 𝐺 ∈ 𝒫 (𝑋 ∖ ℎ)) |
| 53 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
| 54 | 53 | breq1d 5152 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ≈ 𝐾 ↔ 𝐹 ≈ 𝐾)) |
| 55 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 56 | 55 | breq1d 5152 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔 ≈ 𝐾 ↔ 𝐺 ≈ 𝐾)) |
| 57 | 54, 56 | orbi12d 918 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ↔ (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾))) |
| 58 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ℎ = 𝐻) |
| 59 | 55, 58 | uneq12d 4168 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔 ∪ ℎ) = (𝐺 ∪ 𝐻)) |
| 60 | 59 | fveq2d 6909 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑁‘(𝑔 ∪ ℎ)) = (𝑁‘(𝐺 ∪ 𝐻))) |
| 61 | 53, 60 | sseq12d 4016 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ↔ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)))) |
| 62 | 53, 58 | uneq12d 4168 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ∪ ℎ) = (𝐹 ∪ 𝐻)) |
| 63 | 62 | eleq1d 2825 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓 ∪ ℎ) ∈ 𝐼 ↔ (𝐹 ∪ 𝐻) ∈ 𝐼)) |
| 64 | 57, 61, 63 | 3anbi123d 1437 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) ↔ ((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼))) |
| 65 | 55 | pweqd 4616 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝒫 𝑔 = 𝒫 𝐺) |
| 66 | 53 | breq1d 5152 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ≈ 𝑗 ↔ 𝐹 ≈ 𝑗)) |
| 67 | 58 | uneq2d 4167 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑗 ∪ ℎ) = (𝑗 ∪ 𝐻)) |
| 68 | 67 | eleq1d 2825 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑗 ∪ ℎ) ∈ 𝐼 ↔ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 69 | 66, 68 | anbi12d 632 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼) ↔ (𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼))) |
| 70 | 65, 69 | rexeqbidv 3346 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼) ↔ ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼))) |
| 71 | 64, 70 | imbi12d 344 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) ↔ (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
| 72 | 52, 71 | rspcdv 3613 |
. . . . 5
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
| 73 | 47, 72 | rspcimdv 3611 |
. . . 4
⊢ ((𝜑 ∧ ℎ = 𝐻) → (∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
| 74 | 38, 73 | spcimdv 3592 |
. . 3
⊢ (𝜑 → (∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
| 75 | 35, 74 | mpd 15 |
. 2
⊢ (𝜑 → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼))) |
| 76 | 1, 2, 3, 75 | mp3and 1465 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |