Step | Hyp | Ref
| Expression |
1 | | mreexexlemd.6 |
. 2
⊢ (𝜑 → (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾)) |
2 | | mreexexlemd.4 |
. 2
⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
3 | | mreexexlemd.5 |
. 2
⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) |
4 | | mreexexlemd.7 |
. . . 4
⊢ (𝜑 → ∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼))) |
5 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑢 = 𝑓) |
6 | 5 | breq1d 4966 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ≈ 𝐾 ↔ 𝑓 ≈ 𝐾)) |
7 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑣 = 𝑔) |
8 | 7 | breq1d 4966 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑣 ≈ 𝐾 ↔ 𝑔 ≈ 𝐾)) |
9 | 6, 8 | orbi12d 911 |
. . . . . . . . 9
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ↔ (𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾))) |
10 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝑡 = ℎ) |
11 | 7, 10 | uneq12d 4056 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑣 ∪ 𝑡) = (𝑔 ∪ ℎ)) |
12 | 11 | fveq2d 6534 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑁‘(𝑣 ∪ 𝑡)) = (𝑁‘(𝑔 ∪ ℎ))) |
13 | 5, 12 | sseq12d 3916 |
. . . . . . . . 9
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ↔ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)))) |
14 | 5, 10 | uneq12d 4056 |
. . . . . . . . . 10
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (𝑢 ∪ 𝑡) = (𝑓 ∪ ℎ)) |
15 | 14 | eleq1d 2865 |
. . . . . . . . 9
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((𝑢 ∪ 𝑡) ∈ 𝐼 ↔ (𝑓 ∪ ℎ) ∈ 𝐼)) |
16 | 9, 13, 15 | 3anbi123d 1426 |
. . . . . . . 8
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) ↔ ((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼))) |
17 | | simpllr 772 |
. . . . . . . . . . 11
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑢 = 𝑓) |
18 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
19 | 17, 18 | breq12d 4969 |
. . . . . . . . . 10
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → (𝑢 ≈ 𝑖 ↔ 𝑓 ≈ 𝑗)) |
20 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑡 = ℎ) |
21 | 18, 20 | uneq12d 4056 |
. . . . . . . . . . 11
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → (𝑖 ∪ 𝑡) = (𝑗 ∪ ℎ)) |
22 | 21 | eleq1d 2865 |
. . . . . . . . . 10
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → ((𝑖 ∪ 𝑡) ∈ 𝐼 ↔ (𝑗 ∪ ℎ) ∈ 𝐼)) |
23 | 19, 22 | anbi12d 630 |
. . . . . . . . 9
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → ((𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼) ↔ (𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
24 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝑣 = 𝑔) |
25 | 24 | pweqd 4452 |
. . . . . . . . 9
⊢ ((((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) ∧ 𝑖 = 𝑗) → 𝒫 𝑣 = 𝒫 𝑔) |
26 | 23, 25 | cbvrexdva2 3405 |
. . . . . . . 8
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → (∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼) ↔ ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
27 | 16, 26 | imbi12d 346 |
. . . . . . 7
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → ((((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ (((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)))) |
28 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → 𝑡 = ℎ) |
29 | 28 | difeq2d 4015 |
. . . . . . . . 9
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → (𝑋 ∖ 𝑡) = (𝑋 ∖ ℎ)) |
30 | 29 | pweqd 4452 |
. . . . . . . 8
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → 𝒫 (𝑋 ∖ 𝑡) = 𝒫 (𝑋 ∖ ℎ)) |
31 | 30 | adantr 481 |
. . . . . . 7
⊢ (((𝑡 = ℎ ∧ 𝑢 = 𝑓) ∧ 𝑣 = 𝑔) → 𝒫 (𝑋 ∖ 𝑡) = 𝒫 (𝑋 ∖ ℎ)) |
32 | 27, 31 | cbvraldva2 3404 |
. . . . . 6
⊢ ((𝑡 = ℎ ∧ 𝑢 = 𝑓) → (∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ ∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)))) |
33 | 32, 30 | cbvraldva2 3404 |
. . . . 5
⊢ (𝑡 = ℎ → (∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)))) |
34 | 33 | cbvalvw 2018 |
. . . 4
⊢
(∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼)) ↔ ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
35 | 4, 34 | sylib 219 |
. . 3
⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
36 | | ssun2 4065 |
. . . . . 6
⊢ 𝐻 ⊆ (𝐹 ∪ 𝐻) |
37 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐻 ⊆ (𝐹 ∪ 𝐻)) |
38 | 3, 37 | ssexd 5112 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ V) |
39 | | mreexexlemd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
40 | | difexg 5115 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐽 → (𝑋 ∖ 𝐻) ∈ V) |
41 | 39, 40 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∖ 𝐻) ∈ V) |
42 | | mreexexlemd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
43 | 41, 42 | sselpwd 5114 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
44 | 43 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ = 𝐻) → 𝐹 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
45 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ = 𝐻) → ℎ = 𝐻) |
46 | 45 | difeq2d 4015 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝑋 ∖ ℎ) = (𝑋 ∖ 𝐻)) |
47 | 46 | pweqd 4452 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ = 𝐻) → 𝒫 (𝑋 ∖ ℎ) = 𝒫 (𝑋 ∖ 𝐻)) |
48 | 44, 47 | eleqtrrd 2884 |
. . . . 5
⊢ ((𝜑 ∧ ℎ = 𝐻) → 𝐹 ∈ 𝒫 (𝑋 ∖ ℎ)) |
49 | | mreexexlemd.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
50 | 41, 49 | sselpwd 5114 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
51 | 50 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → 𝐺 ∈ 𝒫 (𝑋 ∖ 𝐻)) |
52 | 47 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → 𝒫 (𝑋 ∖ ℎ) = 𝒫 (𝑋 ∖ 𝐻)) |
53 | 51, 52 | eleqtrrd 2884 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → 𝐺 ∈ 𝒫 (𝑋 ∖ ℎ)) |
54 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
55 | 54 | breq1d 4966 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ≈ 𝐾 ↔ 𝐹 ≈ 𝐾)) |
56 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
57 | 56 | breq1d 4966 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔 ≈ 𝐾 ↔ 𝐺 ≈ 𝐾)) |
58 | 55, 57 | orbi12d 911 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ↔ (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾))) |
59 | | simpllr 772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ℎ = 𝐻) |
60 | 56, 59 | uneq12d 4056 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔 ∪ ℎ) = (𝐺 ∪ 𝐻)) |
61 | 60 | fveq2d 6534 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑁‘(𝑔 ∪ ℎ)) = (𝑁‘(𝐺 ∪ 𝐻))) |
62 | 54, 61 | sseq12d 3916 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ↔ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)))) |
63 | 54, 59 | uneq12d 4056 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ∪ ℎ) = (𝐹 ∪ 𝐻)) |
64 | 63 | eleq1d 2865 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓 ∪ ℎ) ∈ 𝐼 ↔ (𝐹 ∪ 𝐻) ∈ 𝐼)) |
65 | 58, 62, 64 | 3anbi123d 1426 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) ↔ ((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼))) |
66 | 56 | pweqd 4452 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝒫 𝑔 = 𝒫 𝐺) |
67 | 54 | breq1d 4966 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑓 ≈ 𝑗 ↔ 𝐹 ≈ 𝑗)) |
68 | 59 | uneq2d 4055 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑗 ∪ ℎ) = (𝑗 ∪ 𝐻)) |
69 | 68 | eleq1d 2865 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑗 ∪ ℎ) ∈ 𝐼 ↔ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
70 | 67, 69 | anbi12d 630 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼) ↔ (𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼))) |
71 | 66, 70 | rexeqbidv 3359 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼) ↔ ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼))) |
72 | 65, 71 | imbi12d 346 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) ↔ (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
73 | 53, 72 | rspcdv 3557 |
. . . . 5
⊢ (((𝜑 ∧ ℎ = 𝐻) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
74 | 48, 73 | rspcimdv 3555 |
. . . 4
⊢ ((𝜑 ∧ ℎ = 𝐻) → (∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
75 | 38, 74 | spcimdv 3530 |
. . 3
⊢ (𝜑 → (∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼)) → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)))) |
76 | 35, 75 | mpd 15 |
. 2
⊢ (𝜑 → (((𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾) ∧ 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻)) ∧ (𝐹 ∪ 𝐻) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼))) |
77 | 1, 2, 3, 76 | mp3and 1454 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |