Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismnu Structured version   Visualization version   GIF version

Theorem ismnu 44250
Description: The hypothesis of this theorem defines a class M of sets that we temporarily call "minimal universes", and which will turn out in grumnueq 44276 to be exactly Grothendicek universes. Minimal universes are sets which satisfy the predicate on 𝑦 in rr-groth 44288, except for the 𝑥𝑦 clause.

A minimal universe is closed under subsets (mnussd 44252), powersets (mnupwd 44256), and an operation which is similar to a combination of collection and union (mnuop3d 44260), from which closure under pairing (mnuprd 44265), unions (mnuunid 44266), and function ranges (mnurnd 44272) can be deduced, from which equivalence with Grothendieck universes (grumnueq 44276) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.)

Hypothesis
Ref Expression
ismnu.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
Assertion
Ref Expression
ismnu (𝑈𝑉 → (𝑈𝑀 ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
Distinct variable groups:   𝑧,𝑤,𝑣,𝑈,𝑓,𝑖,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑧,𝑢,𝑟,𝑤,𝑈,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝑀(𝑧,𝑤,𝑣,𝑢,𝑓,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑉(𝑧,𝑤,𝑣,𝑢,𝑓,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem ismnu
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑘 = 𝑈𝑙 = 𝑧) → 𝑙 = 𝑧)
21pweqd 4580 . . . . 5 ((𝑘 = 𝑈𝑙 = 𝑧) → 𝒫 𝑙 = 𝒫 𝑧)
3 simpl 482 . . . . 5 ((𝑘 = 𝑈𝑙 = 𝑧) → 𝑘 = 𝑈)
42, 3sseq12d 3980 . . . 4 ((𝑘 = 𝑈𝑙 = 𝑧) → (𝒫 𝑙𝑘 ↔ 𝒫 𝑧𝑈))
523adant3 1132 . . . . . . . . . 10 ((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) → 𝒫 𝑙 = 𝒫 𝑧)
65adantr 480 . . . . . . . . 9 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → 𝒫 𝑙 = 𝒫 𝑧)
7 simpr 484 . . . . . . . . 9 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → 𝑛 = 𝑤)
86, 7sseq12d 3980 . . . . . . . 8 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → (𝒫 𝑙𝑛 ↔ 𝒫 𝑧𝑤))
9 simpl3 1194 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑝 = 𝑖)
10 simpr 484 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑞 = 𝑣)
119, 10eleq12d 2822 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → (𝑝𝑞𝑖𝑣))
12 simpl13 1251 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑚 = 𝑓)
1310, 12eleq12d 2822 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → (𝑞𝑚𝑣𝑓))
1411, 13anbi12d 632 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → ((𝑝𝑞𝑞𝑚) ↔ (𝑖𝑣𝑣𝑓)))
15 simpl11 1249 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑘 = 𝑈)
1614, 15cbvrexdva2 3322 . . . . . . . . . . 11 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) → (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) ↔ ∃𝑣𝑈 (𝑖𝑣𝑣𝑓)))
17 simpl3 1194 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑝 = 𝑖)
18 simpr 484 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑟 = 𝑢)
1917, 18eleq12d 2822 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → (𝑝𝑟𝑖𝑢))
2018unieqd 4884 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑟 = 𝑢)
21 simpl2 1193 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑛 = 𝑤)
2220, 21sseq12d 3980 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → ( 𝑟𝑛 𝑢𝑤))
2319, 22anbi12d 632 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → ((𝑝𝑟 𝑟𝑛) ↔ (𝑖𝑢 𝑢𝑤)))
24 simpl13 1251 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑚 = 𝑓)
2523, 24cbvrexdva2 3322 . . . . . . . . . . 11 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) → (∃𝑟𝑚 (𝑝𝑟 𝑟𝑛) ↔ ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
2616, 25imbi12d 344 . . . . . . . . . 10 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) → ((∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)) ↔ (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
27263expa 1118 . . . . . . . . 9 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) ∧ 𝑝 = 𝑖) → ((∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)) ↔ (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
28 simpll2 1214 . . . . . . . . 9 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) ∧ 𝑝 = 𝑖) → 𝑙 = 𝑧)
2927, 28cbvraldva2 3321 . . . . . . . 8 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → (∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)) ↔ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
308, 29anbi12d 632 . . . . . . 7 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → ((𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
31 simpl1 1192 . . . . . . 7 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → 𝑘 = 𝑈)
3230, 31cbvrexdva2 3322 . . . . . 6 ((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) → (∃𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ ∃𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
33323expa 1118 . . . . 5 (((𝑘 = 𝑈𝑙 = 𝑧) ∧ 𝑚 = 𝑓) → (∃𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ ∃𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
3433cbvaldvaw 2038 . . . 4 ((𝑘 = 𝑈𝑙 = 𝑧) → (∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
354, 34anbi12d 632 . . 3 ((𝑘 = 𝑈𝑙 = 𝑧) → ((𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)))) ↔ (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
3635, 3cbvraldva2 3321 . 2 (𝑘 = 𝑈 → (∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)))) ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
37 ismnu.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
3836, 37elab2g 3647 1 (𝑈𝑉 → (𝑈𝑀 ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3914  𝒫 cpw 4563   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-pw 4565  df-uni 4872
This theorem is referenced by:  mnuop123d  44251  grumnudlem  44274  rr-grothprimbi  44284  rr-groth  44288  dfuniv2  44291
  Copyright terms: Public domain W3C validator