Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismnu Structured version   Visualization version   GIF version

Theorem ismnu 44230
Description: The hypothesis of this theorem defines a class M of sets that we temporarily call "minimal universes", and which will turn out in grumnueq 44256 to be exactly Grothendicek universes. Minimal universes are sets which satisfy the predicate on 𝑦 in rr-groth 44268, except for the 𝑥𝑦 clause.

A minimal universe is closed under subsets (mnussd 44232), powersets (mnupwd 44236), and an operation which is similar to a combination of collection and union (mnuop3d 44240), from which closure under pairing (mnuprd 44245), unions (mnuunid 44246), and function ranges (mnurnd 44252) can be deduced, from which equivalence with Grothendieck universes (grumnueq 44256) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.)

Hypothesis
Ref Expression
ismnu.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
Assertion
Ref Expression
ismnu (𝑈𝑉 → (𝑈𝑀 ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
Distinct variable groups:   𝑧,𝑤,𝑣,𝑈,𝑓,𝑖,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑧,𝑢,𝑟,𝑤,𝑈,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝑀(𝑧,𝑤,𝑣,𝑢,𝑓,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑉(𝑧,𝑤,𝑣,𝑢,𝑓,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem ismnu
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑘 = 𝑈𝑙 = 𝑧) → 𝑙 = 𝑧)
21pweqd 4639 . . . . 5 ((𝑘 = 𝑈𝑙 = 𝑧) → 𝒫 𝑙 = 𝒫 𝑧)
3 simpl 482 . . . . 5 ((𝑘 = 𝑈𝑙 = 𝑧) → 𝑘 = 𝑈)
42, 3sseq12d 4042 . . . 4 ((𝑘 = 𝑈𝑙 = 𝑧) → (𝒫 𝑙𝑘 ↔ 𝒫 𝑧𝑈))
523adant3 1132 . . . . . . . . . 10 ((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) → 𝒫 𝑙 = 𝒫 𝑧)
65adantr 480 . . . . . . . . 9 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → 𝒫 𝑙 = 𝒫 𝑧)
7 simpr 484 . . . . . . . . 9 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → 𝑛 = 𝑤)
86, 7sseq12d 4042 . . . . . . . 8 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → (𝒫 𝑙𝑛 ↔ 𝒫 𝑧𝑤))
9 simpl3 1193 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑝 = 𝑖)
10 simpr 484 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑞 = 𝑣)
119, 10eleq12d 2838 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → (𝑝𝑞𝑖𝑣))
12 simpl13 1250 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑚 = 𝑓)
1310, 12eleq12d 2838 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → (𝑞𝑚𝑣𝑓))
1411, 13anbi12d 631 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → ((𝑝𝑞𝑞𝑚) ↔ (𝑖𝑣𝑣𝑓)))
15 simpl11 1248 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑞 = 𝑣) → 𝑘 = 𝑈)
1614, 15cbvrexdva2 3357 . . . . . . . . . . 11 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) → (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) ↔ ∃𝑣𝑈 (𝑖𝑣𝑣𝑓)))
17 simpl3 1193 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑝 = 𝑖)
18 simpr 484 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑟 = 𝑢)
1917, 18eleq12d 2838 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → (𝑝𝑟𝑖𝑢))
2018unieqd 4944 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑟 = 𝑢)
21 simpl2 1192 . . . . . . . . . . . . . 14 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑛 = 𝑤)
2220, 21sseq12d 4042 . . . . . . . . . . . . 13 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → ( 𝑟𝑛 𝑢𝑤))
2319, 22anbi12d 631 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → ((𝑝𝑟 𝑟𝑛) ↔ (𝑖𝑢 𝑢𝑤)))
24 simpl13 1250 . . . . . . . . . . . 12 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) ∧ 𝑟 = 𝑢) → 𝑚 = 𝑓)
2523, 24cbvrexdva2 3357 . . . . . . . . . . 11 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) → (∃𝑟𝑚 (𝑝𝑟 𝑟𝑛) ↔ ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
2616, 25imbi12d 344 . . . . . . . . . 10 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤𝑝 = 𝑖) → ((∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)) ↔ (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
27263expa 1118 . . . . . . . . 9 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) ∧ 𝑝 = 𝑖) → ((∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)) ↔ (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
28 simpll2 1213 . . . . . . . . 9 ((((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) ∧ 𝑝 = 𝑖) → 𝑙 = 𝑧)
2927, 28cbvraldva2 3356 . . . . . . . 8 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → (∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)) ↔ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
308, 29anbi12d 631 . . . . . . 7 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → ((𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
31 simpl1 1191 . . . . . . 7 (((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) ∧ 𝑛 = 𝑤) → 𝑘 = 𝑈)
3230, 31cbvrexdva2 3357 . . . . . 6 ((𝑘 = 𝑈𝑙 = 𝑧𝑚 = 𝑓) → (∃𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ ∃𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
33323expa 1118 . . . . 5 (((𝑘 = 𝑈𝑙 = 𝑧) ∧ 𝑚 = 𝑓) → (∃𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ ∃𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
3433cbvaldvaw 2037 . . . 4 ((𝑘 = 𝑈𝑙 = 𝑧) → (∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))) ↔ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
354, 34anbi12d 631 . . 3 ((𝑘 = 𝑈𝑙 = 𝑧) → ((𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)))) ↔ (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
3635, 3cbvraldva2 3356 . 2 (𝑘 = 𝑈 → (∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛)))) ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
37 ismnu.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
3836, 37elab2g 3696 1 (𝑈𝑉 → (𝑈𝑀 ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976  𝒫 cpw 4622   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932
This theorem is referenced by:  mnuop123d  44231  grumnudlem  44254  rr-grothprimbi  44264  rr-groth  44268  dfuniv2  44271
  Copyright terms: Public domain W3C validator