| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvoprab1davw | Structured version Visualization version GIF version | ||
| Description: Change the first bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvoprab1davw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvoprab1davw | ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4839 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) | |
| 2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) |
| 3 | 2 | opeq1d 4845 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑤, 𝑦〉, 𝑧〉) |
| 4 | 3 | eqeq2d 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → (𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝑡 = 〈〈𝑤, 𝑦〉, 𝑧〉)) |
| 5 | cbvoprab1davw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → (𝜓 ↔ 𝜒)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → ((𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ (𝑡 = 〈〈𝑤, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
| 7 | 6 | 2exbidv 1924 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑤) → (∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑦∃𝑧(𝑡 = 〈〈𝑤, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
| 8 | 7 | cbvexdvaw 2039 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑤∃𝑦∃𝑧(𝑡 = 〈〈𝑤, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
| 9 | 8 | abbidv 2796 | . 2 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} = {𝑡 ∣ ∃𝑤∃𝑦∃𝑧(𝑡 = 〈〈𝑤, 𝑦〉, 𝑧〉 ∧ 𝜒)}) |
| 10 | df-oprab 7393 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
| 11 | df-oprab 7393 | . 2 ⊢ {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜒} = {𝑡 ∣ ∃𝑤∃𝑦∃𝑧(𝑡 = 〈〈𝑤, 𝑦〉, 𝑧〉 ∧ 𝜒)} | |
| 12 | 9, 10, 11 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2708 〈cop 4597 {coprab 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-oprab 7393 |
| This theorem is referenced by: cbvmpo1davw2 36275 |
| Copyright terms: Public domain | W3C validator |