Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvoprab1vw Structured version   Visualization version   GIF version

Theorem cbvoprab1vw 36195
Description: Change the first bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvoprab1vw.1 (𝑥 = 𝑤 → (𝜓𝜒))
Assertion
Ref Expression
cbvoprab1vw {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜒}
Distinct variable groups:   𝑥,𝑦,𝑤   𝑥,𝑧,𝑤   𝜓,𝑤   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab1vw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4897 . . . . . . . 8 (𝑥 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
21opeq1d 4903 . . . . . . 7 (𝑥 = 𝑤 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩)
32eqeq2d 2751 . . . . . 6 (𝑥 = 𝑤 → (𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩))
4 cbvoprab1vw.1 . . . . . 6 (𝑥 = 𝑤 → (𝜓𝜒))
53, 4anbi12d 631 . . . . 5 (𝑥 = 𝑤 → ((𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∧ 𝜒)))
652exbidv 1923 . . . 4 (𝑥 = 𝑤 → (∃𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑦𝑧(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∧ 𝜒)))
76cbvexvw 2036 . . 3 (∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑤𝑦𝑧(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∧ 𝜒))
87abbii 2812 . 2 {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑡 ∣ ∃𝑤𝑦𝑧(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∧ 𝜒)}
9 df-oprab 7447 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
10 df-oprab 7447 . 2 {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜒} = {𝑡 ∣ ∃𝑤𝑦𝑧(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∧ 𝜒)}
118, 9, 103eqtr4i 2778 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜒}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  {cab 2717  cop 4654  {coprab 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7447
This theorem is referenced by:  cbvmpo1vw2  36201
  Copyright terms: Public domain W3C validator