MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotavw Structured version   Visualization version   GIF version

Theorem cbviotavw 6396
Description: Change bound variables in a description binder. Version of cbviotav 6399 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
cbviotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbviotavw (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbviotavw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviotavw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvabv 2812 . . . . 5 {𝑥𝜑} = {𝑦𝜓}
32eqeq1i 2744 . . . 4 ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜓} = {𝑧})
43abbii 2809 . . 3 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
54unieqi 4857 . 2 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
6 df-iota 6388 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 6388 . 2 (℩𝑦𝜓) = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
85, 6, 73eqtr4i 2777 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  {cab 2716  {csn 4566   cuni 4844  cio 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-uni 4845  df-iota 6388
This theorem is referenced by:  cbvriotavw  7235  oeeui  8409  nosupcbv  33884  noinfcbv  33899  ellimciota  43109  fourierdlem96  43697  fourierdlem97  43698  fourierdlem98  43699  fourierdlem99  43700  fourierdlem105  43706  fourierdlem106  43707  fourierdlem108  43709  fourierdlem110  43711  fourierdlem112  43713  fourierdlem113  43714  fourierdlem115  43716  funressndmafv2rn  44666
  Copyright terms: Public domain W3C validator