Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version |
Description: Change bound variables in a description binder. Version of cbviotav 6451 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvabv 2810 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
3 | 2 | eqeq1i 2742 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
4 | 3 | abbii 2807 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
5 | 4 | unieqi 4873 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
6 | df-iota 6440 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
7 | df-iota 6440 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
8 | 5, 6, 7 | 3eqtr4i 2775 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 {cab 2714 {csn 4581 ∪ cuni 4860 ℩cio 6438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3445 df-in 3912 df-ss 3922 df-uni 4861 df-iota 6440 |
This theorem is referenced by: cbvriotavw 7312 oeeui 8513 nosupcbv 26960 noinfcbv 26975 ellimciota 43543 fourierdlem96 44131 fourierdlem97 44132 fourierdlem98 44133 fourierdlem99 44134 fourierdlem105 44140 fourierdlem106 44141 fourierdlem108 44143 fourierdlem110 44145 fourierdlem112 44147 fourierdlem113 44148 fourierdlem115 44150 funressndmafv2rn 45133 |
Copyright terms: Public domain | W3C validator |