MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotavw Structured version   Visualization version   GIF version

Theorem cbviotavw 6445
Description: Change bound variables in a description binder. Version of cbviotav 6447 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbviotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbviotavw (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbviotavw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviotavw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvabv 2801 . . . . 5 {𝑥𝜑} = {𝑦𝜓}
32eqeq1i 2736 . . . 4 ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜓} = {𝑧})
43abbii 2798 . . 3 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
54unieqi 4868 . 2 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
6 df-iota 6437 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 6437 . 2 (℩𝑦𝜓) = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
85, 6, 73eqtr4i 2764 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  {cab 2709  {csn 4573   cuni 4856  cio 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-uni 4857  df-iota 6437
This theorem is referenced by:  cbvriotavw  7313  oeeui  8517  nosupcbv  27641  noinfcbv  27656  cbvriotavw2  36278  ellimciota  45662  fourierdlem96  46248  fourierdlem97  46249  fourierdlem98  46250  fourierdlem99  46251  fourierdlem105  46257  fourierdlem106  46258  fourierdlem108  46260  fourierdlem110  46262  fourierdlem112  46264  fourierdlem113  46265  fourierdlem115  46267  funressndmafv2rn  47262
  Copyright terms: Public domain W3C validator