MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotavw Structured version   Visualization version   GIF version

Theorem cbviotavw 6346
Description: Change bound variables in a description binder. Version of cbviotav 6349 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
cbviotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbviotavw (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbviotavw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviotavw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvabv 2811 . . . . 5 {𝑥𝜑} = {𝑦𝜓}
32eqeq1i 2742 . . . 4 ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜓} = {𝑧})
43abbii 2808 . . 3 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
54unieqi 4832 . 2 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
6 df-iota 6338 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 6338 . 2 (℩𝑦𝜓) = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
85, 6, 73eqtr4i 2775 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  {cab 2714  {csn 4541   cuni 4819  cio 6336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-uni 4820  df-iota 6338
This theorem is referenced by:  cbvriotavw  7180  oeeui  8330  nosupcbv  33642  noinfcbv  33657  ellimciota  42830  fourierdlem96  43418  fourierdlem97  43419  fourierdlem98  43420  fourierdlem99  43421  fourierdlem105  43427  fourierdlem106  43428  fourierdlem108  43430  fourierdlem110  43432  fourierdlem112  43434  fourierdlem113  43435  fourierdlem115  43437  funressndmafv2rn  44387
  Copyright terms: Public domain W3C validator