![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version |
Description: Change bound variables in a description binder. Version of cbviotav 6536 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvabv 2815 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
3 | 2 | eqeq1i 2745 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
4 | 3 | abbii 2812 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
5 | 4 | unieqi 4943 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
6 | df-iota 6525 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
7 | df-iota 6525 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
8 | 5, 6, 7 | 3eqtr4i 2778 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 {cab 2717 {csn 4648 ∪ cuni 4931 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 |
This theorem is referenced by: cbvriotavw 7414 oeeui 8658 nosupcbv 27765 noinfcbv 27780 cbvriotavw2 36202 ellimciota 45535 fourierdlem96 46123 fourierdlem97 46124 fourierdlem98 46125 fourierdlem99 46126 fourierdlem105 46132 fourierdlem106 46133 fourierdlem108 46135 fourierdlem110 46137 fourierdlem112 46139 fourierdlem113 46140 fourierdlem115 46142 funressndmafv2rn 47138 |
Copyright terms: Public domain | W3C validator |