| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a description binder. Version of cbviotav 6474 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvabv 2799 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 3 | 2 | eqeq1i 2734 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
| 4 | 3 | abbii 2796 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 5 | 4 | unieqi 4883 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 6 | df-iota 6464 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 7 | df-iota 6464 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
| 8 | 5, 6, 7 | 3eqtr4i 2762 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 {cab 2707 {csn 4589 ∪ cuni 4871 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: cbvriotavw 7354 oeeui 8566 nosupcbv 27614 noinfcbv 27629 cbvriotavw2 36224 ellimciota 45612 fourierdlem96 46200 fourierdlem97 46201 fourierdlem98 46202 fourierdlem99 46203 fourierdlem105 46209 fourierdlem106 46210 fourierdlem108 46212 fourierdlem110 46214 fourierdlem112 46216 fourierdlem113 46217 fourierdlem115 46219 funressndmafv2rn 47224 |
| Copyright terms: Public domain | W3C validator |