| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a description binder. Version of cbviotav 6462 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvabv 2799 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 3 | 2 | eqeq1i 2734 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
| 4 | 3 | abbii 2796 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 5 | 4 | unieqi 4879 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 6 | df-iota 6452 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 7 | df-iota 6452 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
| 8 | 5, 6, 7 | 3eqtr4i 2762 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 {cab 2707 {csn 4585 ∪ cuni 4867 ℩cio 6450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-iota 6452 |
| This theorem is referenced by: cbvriotavw 7336 oeeui 8543 nosupcbv 27590 noinfcbv 27605 cbvriotavw2 36197 ellimciota 45585 fourierdlem96 46173 fourierdlem97 46174 fourierdlem98 46175 fourierdlem99 46176 fourierdlem105 46182 fourierdlem106 46183 fourierdlem108 46185 fourierdlem110 46187 fourierdlem112 46189 fourierdlem113 46190 fourierdlem115 46192 funressndmafv2rn 47197 |
| Copyright terms: Public domain | W3C validator |