| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a description binder. Version of cbviotav 6447 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvabv 2801 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 3 | 2 | eqeq1i 2736 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
| 4 | 3 | abbii 2798 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 5 | 4 | unieqi 4868 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 6 | df-iota 6437 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 7 | df-iota 6437 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
| 8 | 5, 6, 7 | 3eqtr4i 2764 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 {cab 2709 {csn 4573 ∪ cuni 4856 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-iota 6437 |
| This theorem is referenced by: cbvriotavw 7313 oeeui 8517 nosupcbv 27641 noinfcbv 27656 cbvriotavw2 36278 ellimciota 45662 fourierdlem96 46248 fourierdlem97 46249 fourierdlem98 46250 fourierdlem99 46251 fourierdlem105 46257 fourierdlem106 46258 fourierdlem108 46260 fourierdlem110 46262 fourierdlem112 46264 fourierdlem113 46265 fourierdlem115 46267 funressndmafv2rn 47262 |
| Copyright terms: Public domain | W3C validator |