| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a description binder. Version of cbviotav 6499 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvabv 2806 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 3 | 2 | eqeq1i 2741 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
| 4 | 3 | abbii 2803 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 5 | 4 | unieqi 4900 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
| 6 | df-iota 6489 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 7 | df-iota 6489 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
| 8 | 5, 6, 7 | 3eqtr4i 2769 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 {cab 2714 {csn 4606 ∪ cuni 4888 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: cbvriotavw 7377 oeeui 8619 nosupcbv 27671 noinfcbv 27686 cbvriotavw2 36259 ellimciota 45610 fourierdlem96 46198 fourierdlem97 46199 fourierdlem98 46200 fourierdlem99 46201 fourierdlem105 46207 fourierdlem106 46208 fourierdlem108 46210 fourierdlem110 46212 fourierdlem112 46214 fourierdlem113 46215 fourierdlem115 46217 funressndmafv2rn 47219 |
| Copyright terms: Public domain | W3C validator |