![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvabw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2809 with a disjoint variable condition, which does not require ax-10 2138, ax-13 2372. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 23-May-2024.) |
Ref | Expression |
---|---|
cbvabw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvabw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvabw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabw | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvabw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvabw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvsbvf 2361 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
5 | df-clab 2711 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
6 | df-clab 2711 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
7 | 4, 5, 6 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
8 | 7 | eqriv 2730 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 Ⅎwnf 1786 [wsb 2068 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 |
This theorem is referenced by: cbvrabw 3468 cbvsbcw 3812 cbvrabcsfw 3938 rabsnifsb 4727 dfdmf 5897 dfrnf 5950 funfv2f 6981 abrexex2g 7951 bnj873 33935 fineqvrep 34095 ptrest 36487 poimirlem26 36514 poimirlem27 36515 |
Copyright terms: Public domain | W3C validator |