| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2802 with a disjoint variable condition, which does not require ax-10 2142, ax-13 2371. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by GG, 23-May-2024.) |
| Ref | Expression |
|---|---|
| cbvabw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvabw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvabw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabw | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvabw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvabw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvsbvf 2362 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 5 | df-clab 2709 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 6 | df-clab 2709 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 8 | 7 | eqriv 2727 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 |
| This theorem is referenced by: cbvrabw 3444 cbvrabwOLD 3445 cbvsbcw 3789 cbvrabcsfw 3906 rabsnifsb 4689 dfdmf 5863 dfrnf 5917 funfv2f 6953 abrexex2g 7946 bnj873 34921 fineqvrep 35092 ptrest 37620 poimirlem26 37647 poimirlem27 37648 |
| Copyright terms: Public domain | W3C validator |