![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvabw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2817 with a disjoint variable condition, which does not require ax-10 2141, ax-13 2380. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by GG, 23-May-2024.) |
Ref | Expression |
---|---|
cbvabw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvabw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvabw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabw | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvabw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvabw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvsbvf 2369 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
5 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
6 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
7 | 4, 5, 6 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
8 | 7 | eqriv 2737 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1781 [wsb 2064 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 |
This theorem is referenced by: cbvrabw 3481 cbvrabwOLD 3482 cbvsbcw 3838 cbvrabcsfw 3965 rabsnifsb 4747 dfdmf 5921 dfrnf 5975 funfv2f 7011 abrexex2g 8005 bnj873 34900 fineqvrep 35071 ptrest 37579 poimirlem26 37606 poimirlem27 37607 |
Copyright terms: Public domain | W3C validator |