MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvabw Structured version   Visualization version   GIF version

Theorem cbvabw 2800
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2801 with a disjoint variable condition, which does not require ax-10 2142, ax-13 2370. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvabw.1 𝑦𝜑
cbvabw.2 𝑥𝜓
cbvabw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvabw {𝑥𝜑} = {𝑦𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvabw.1 . . . 4 𝑦𝜑
2 cbvabw.2 . . . 4 𝑥𝜓
3 cbvabw.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvsbvf 2361 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
5 df-clab 2708 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
6 df-clab 2708 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
74, 5, 63bitr4i 303 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
87eqriv 2726 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wnf 1783  [wsb 2065  wcel 2109  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721
This theorem is referenced by:  cbvrabw  3441  cbvrabwOLD  3442  cbvsbcw  3786  cbvrabcsfw  3903  rabsnifsb  4686  dfdmf  5860  dfrnf  5914  funfv2f  6950  abrexex2g  7943  bnj873  34914  fineqvrep  35085  ptrest  37613  poimirlem26  37640  poimirlem27  37641
  Copyright terms: Public domain W3C validator