Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsexg | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.) |
Ref | Expression |
---|---|
ceqsexg.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsexg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2147 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝑥 = 𝐴 ∧ 𝜑) | |
2 | ceqsexg.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | nfbi 1906 | . 2 ⊢ Ⅎ𝑥(∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
4 | ceqex 3582 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
5 | ceqsexg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | bibi12d 346 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜑) ↔ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓))) |
7 | biid 260 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
8 | 3, 6, 7 | vtoclg1f 3504 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |