| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexg | Structured version Visualization version GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.) |
| Ref | Expression |
|---|---|
| ceqsexg.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsexg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2149 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝑥 = 𝐴 ∧ 𝜑) | |
| 2 | ceqsexg.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | nfbi 1902 | . 2 ⊢ Ⅎ𝑥(∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| 4 | ceqex 3635 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 5 | ceqsexg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜑) ↔ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓))) |
| 7 | biid 261 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
| 8 | 3, 6, 7 | vtoclg1f 3553 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |