| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1902 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbbib 2359 euf 2569 sb8eulem 2591 axextmo 2705 abbib 2798 cleqh 2857 cleqf 2920 sbhypfOLD 3511 ceqsexg 3619 elabgf 3641 axrep1 5235 axrep3 5238 axrep4OLD 5241 copsex2t 5452 opeliunxp2 5802 ralxpf 5810 cbviotaw 6471 cbviota 6473 sb8iota 6475 fvopab5 7001 fmptco 7101 nfiso 7297 dfoprab4f 8035 opeliunxp2f 8189 xpf1o 9103 zfcndrep 10567 gsumcom2 19905 isfildlem 23744 cnextfvval 23952 mbfsup 25565 mbfinf 25566 brabgaf 32536 fmptcof2 32581 bnj1468 34836 subtr2 36303 mpobi123f 38156 eqrelf 38244 unielss 43207 permaxrep 44996 fourierdlem31 46136 |
| Copyright terms: Public domain | W3C validator |