| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1902 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbbib 2360 euf 2570 sb8eulem 2592 axextmo 2706 abbib 2799 cleqh 2858 cleqf 2921 sbhypfOLD 3514 ceqsexg 3622 elabgf 3644 axrep1 5238 axrep3 5241 axrep4OLD 5244 copsex2t 5455 opeliunxp2 5805 ralxpf 5813 cbviotaw 6474 cbviota 6476 sb8iota 6478 fvopab5 7004 fmptco 7104 nfiso 7300 dfoprab4f 8038 opeliunxp2f 8192 xpf1o 9109 zfcndrep 10574 gsumcom2 19912 isfildlem 23751 cnextfvval 23959 mbfsup 25572 mbfinf 25573 brabgaf 32543 fmptcof2 32588 bnj1468 34843 subtr2 36310 mpobi123f 38163 eqrelf 38251 unielss 43214 permaxrep 45003 fourierdlem31 46143 |
| Copyright terms: Public domain | W3C validator |