![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 1898 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1541 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1535 Ⅎwnf 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 |
This theorem is referenced by: sbbib 2352 euf 2565 sb8eulem 2587 axextmo 2702 abbib 2799 cleqh 2858 cleqf 2929 sbhypfOLD 3535 ceqsexg 3637 elabgtOLDOLD 3660 elabgf 3661 elabgOLD 3664 axrep1 5280 axrep3 5283 axrep4 5284 copsex2t 5488 copsex2gOLD 5490 opeliunxp2 5835 ralxpf 5843 cbviotaw 6501 cbviota 6504 sb8iota 6506 fvopab5 7032 fmptco 7132 nfiso 7324 dfoprab4f 8054 opeliunxp2f 8209 xpf1o 9155 zfcndrep 10629 gsumcom2 19921 isfildlem 23748 cnextfvval 23956 mbfsup 25580 mbfinf 25581 brabgaf 32381 fmptcof2 32426 bnj1468 34413 subtr2 35735 mpobi123f 37570 eqrelf 37662 unielss 42569 fourierdlem31 45449 |
Copyright terms: Public domain | W3C validator |