| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1902 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbbib 2359 euf 2569 sb8eulem 2591 axextmo 2705 abbib 2798 cleqh 2857 cleqf 2920 sbhypfOLD 3508 ceqsexg 3616 elabgf 3638 axrep1 5230 axrep3 5233 axrep4OLD 5236 copsex2t 5447 opeliunxp2 5792 ralxpf 5800 cbviotaw 6459 cbviota 6461 sb8iota 6463 fvopab5 6983 fmptco 7083 nfiso 7279 dfoprab4f 8014 opeliunxp2f 8166 xpf1o 9080 zfcndrep 10543 gsumcom2 19889 isfildlem 23777 cnextfvval 23985 mbfsup 25598 mbfinf 25599 brabgaf 32586 fmptcof2 32631 bnj1468 34829 subtr2 36296 mpobi123f 38149 eqrelf 38237 unielss 43200 permaxrep 44989 fourierdlem31 46129 |
| Copyright terms: Public domain | W3C validator |