Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 1906 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1546 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1540 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: sbbib 2359 euf 2576 sb8eulem 2598 axextmo 2713 abbi 2811 cleqh 2862 cleqf 2937 sbhypf 3481 ceqsexg 3575 elabgtOLD 3597 elabgf 3598 elabgOLD 3601 axrep1 5206 axrep3 5209 axrep4 5210 copsex2t 5400 copsex2gOLD 5402 opeliunxp2 5736 ralxpf 5744 cbviotaw 6383 cbviota 6386 sb8iota 6388 fvopab5 6889 fmptco 6983 nfiso 7173 dfoprab4f 7869 opeliunxp2f 7997 xpf1o 8875 zfcndrep 10301 gsumcom2 19491 isfildlem 22916 cnextfvval 23124 mbfsup 24733 mbfinf 24734 brabgaf 30849 fmptcof2 30896 bnj1468 32726 subtr2 34431 mpobi123f 36247 eqrelf 36322 fourierdlem31 43569 |
Copyright terms: Public domain | W3C validator |