| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1902 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbbib 2359 euf 2569 sb8eulem 2591 axextmo 2705 abbib 2798 cleqh 2857 cleqf 2920 sbhypfOLD 3508 ceqsexg 3616 elabgf 3638 axrep1 5230 axrep3 5233 axrep4OLD 5236 copsex2t 5447 opeliunxp2 5792 ralxpf 5800 cbviotaw 6459 cbviota 6461 sb8iota 6463 fvopab5 6983 fmptco 7083 nfiso 7279 dfoprab4f 8014 opeliunxp2f 8166 xpf1o 9080 zfcndrep 10543 gsumcom2 19881 isfildlem 23720 cnextfvval 23928 mbfsup 25541 mbfinf 25542 brabgaf 32509 fmptcof2 32554 bnj1468 34809 subtr2 36276 mpobi123f 38129 eqrelf 38217 unielss 43180 permaxrep 44969 fourierdlem31 46109 |
| Copyright terms: Public domain | W3C validator |