MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbi Structured version   Visualization version   GIF version

Theorem nfbi 1903
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfbi 𝑥(𝜑𝜓)

Proof of Theorem nfbi
StepHypRef Expression
1 nf.1 . . . 4 𝑥𝜑
21a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nf.2 . . . 4 𝑥𝜓
43a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜓)
52, 4nfbid 1902 . 2 (⊤ → Ⅎ𝑥(𝜑𝜓))
65mptru 1547 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wtru 1541  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784
This theorem is referenced by:  sbbib  2359  euf  2569  sb8eulem  2591  axextmo  2705  abbib  2798  cleqh  2857  cleqf  2920  sbhypfOLD  3508  ceqsexg  3616  elabgf  3638  axrep1  5230  axrep3  5233  axrep4OLD  5236  copsex2t  5447  opeliunxp2  5792  ralxpf  5800  cbviotaw  6459  cbviota  6461  sb8iota  6463  fvopab5  6983  fmptco  7083  nfiso  7279  dfoprab4f  8014  opeliunxp2f  8166  xpf1o  9080  zfcndrep  10543  gsumcom2  19889  isfildlem  23777  cnextfvval  23985  mbfsup  25598  mbfinf  25599  brabgaf  32586  fmptcof2  32631  bnj1468  34829  subtr2  36296  mpobi123f  38149  eqrelf  38237  unielss  43200  permaxrep  44989  fourierdlem31  46129
  Copyright terms: Public domain W3C validator