![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 1901 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1544 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ⊤wtru 1538 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: sbbib 2367 euf 2579 sb8eulem 2601 axextmo 2715 abbib 2814 cleqh 2874 cleqf 2940 sbhypfOLD 3557 ceqsexg 3666 elabgtOLDOLD 3687 elabgf 3688 elabgOLD 3691 axrep1 5304 axrep3 5307 axrep4 5308 copsex2t 5512 opeliunxp2 5863 ralxpf 5871 cbviotaw 6532 cbviota 6535 sb8iota 6537 fvopab5 7062 fmptco 7163 nfiso 7358 dfoprab4f 8097 opeliunxp2f 8251 xpf1o 9205 zfcndrep 10683 gsumcom2 20017 isfildlem 23886 cnextfvval 24094 mbfsup 25718 mbfinf 25719 brabgaf 32630 fmptcof2 32675 bnj1468 34822 subtr2 36281 mpobi123f 38122 eqrelf 38211 unielss 43179 fourierdlem31 46059 |
Copyright terms: Public domain | W3C validator |