| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1902 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbbib 2363 euf 2575 sb8eulem 2597 axextmo 2711 abbib 2804 cleqh 2864 cleqf 2927 sbhypfOLD 3524 ceqsexg 3632 elabgf 3653 axrep1 5250 axrep3 5253 axrep4OLD 5256 copsex2t 5467 opeliunxp2 5818 ralxpf 5826 cbviotaw 6491 cbviota 6493 sb8iota 6495 fvopab5 7019 fmptco 7119 nfiso 7315 dfoprab4f 8055 opeliunxp2f 8209 xpf1o 9153 zfcndrep 10628 gsumcom2 19956 isfildlem 23795 cnextfvval 24003 mbfsup 25617 mbfinf 25618 brabgaf 32588 fmptcof2 32635 bnj1468 34877 subtr2 36333 mpobi123f 38186 eqrelf 38273 unielss 43242 permaxrep 45031 fourierdlem31 46167 |
| Copyright terms: Public domain | W3C validator |