![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 1899 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1543 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ⊤wtru 1537 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 |
This theorem is referenced by: sbbib 2361 euf 2573 sb8eulem 2595 axextmo 2709 abbib 2808 cleqh 2868 cleqf 2931 sbhypfOLD 3544 ceqsexg 3652 elabgtOLDOLD 3673 elabgf 3674 elabgOLD 3677 axrep1 5285 axrep3 5288 axrep4OLD 5291 copsex2t 5502 opeliunxp2 5851 ralxpf 5859 cbviotaw 6522 cbviota 6524 sb8iota 6526 fvopab5 7048 fmptco 7148 nfiso 7341 dfoprab4f 8079 opeliunxp2f 8233 xpf1o 9177 zfcndrep 10651 gsumcom2 20007 isfildlem 23880 cnextfvval 24088 mbfsup 25712 mbfinf 25713 brabgaf 32627 fmptcof2 32673 bnj1468 34838 subtr2 36297 mpobi123f 38148 eqrelf 38236 unielss 43206 fourierdlem31 46093 |
Copyright terms: Public domain | W3C validator |