MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbi Structured version   Visualization version   GIF version

Theorem nfbi 1907
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfbi 𝑥(𝜑𝜓)

Proof of Theorem nfbi
StepHypRef Expression
1 nf.1 . . . 4 𝑥𝜑
21a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nf.2 . . . 4 𝑥𝜓
43a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜓)
52, 4nfbid 1906 . 2 (⊤ → Ⅎ𝑥(𝜑𝜓))
65mptru 1549 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1543  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787
This theorem is referenced by:  sbbib  2358  euf  2571  sb8eulem  2593  axextmo  2708  abbib  2805  cleqh  2864  cleqf  2935  sbhypfOLD  3540  ceqsexg  3642  elabgtOLD  3664  elabgf  3665  elabgOLD  3668  axrep1  5287  axrep3  5290  axrep4  5291  copsex2t  5493  copsex2gOLD  5495  opeliunxp2  5839  ralxpf  5847  cbviotaw  6503  cbviota  6506  sb8iota  6508  fvopab5  7031  fmptco  7127  nfiso  7319  dfoprab4f  8042  opeliunxp2f  8195  xpf1o  9139  zfcndrep  10609  gsumcom2  19843  isfildlem  23361  cnextfvval  23569  mbfsup  25181  mbfinf  25182  brabgaf  31837  fmptcof2  31882  bnj1468  33857  subtr2  35200  mpobi123f  37030  eqrelf  37123  unielss  41967  fourierdlem31  44854
  Copyright terms: Public domain W3C validator