| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1902 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbbib 2359 euf 2569 sb8eulem 2591 axextmo 2705 abbib 2798 cleqh 2857 cleqf 2920 sbhypfOLD 3500 ceqsexg 3608 elabgf 3630 axrep1 5219 axrep3 5222 axrep4OLD 5225 copsex2t 5435 opeliunxp2 5781 ralxpf 5789 cbviotaw 6445 cbviota 6447 sb8iota 6449 fvopab5 6963 fmptco 7063 nfiso 7259 dfoprab4f 7991 opeliunxp2f 8143 xpf1o 9056 zfcndrep 10508 gsumcom2 19854 isfildlem 23742 cnextfvval 23950 mbfsup 25563 mbfinf 25564 brabgaf 32553 fmptcof2 32600 bnj1468 34813 subtr2 36293 mpobi123f 38146 eqrelf 38234 unielss 43195 permaxrep 44984 fourierdlem31 46123 |
| Copyright terms: Public domain | W3C validator |