![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 1906 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1549 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1543 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 |
This theorem is referenced by: sbbib 2358 euf 2571 sb8eulem 2593 axextmo 2708 abbib 2805 cleqh 2864 cleqf 2935 sbhypfOLD 3540 ceqsexg 3642 elabgtOLD 3664 elabgf 3665 elabgOLD 3668 axrep1 5287 axrep3 5290 axrep4 5291 copsex2t 5493 copsex2gOLD 5495 opeliunxp2 5839 ralxpf 5847 cbviotaw 6503 cbviota 6506 sb8iota 6508 fvopab5 7031 fmptco 7127 nfiso 7319 dfoprab4f 8042 opeliunxp2f 8195 xpf1o 9139 zfcndrep 10609 gsumcom2 19843 isfildlem 23361 cnextfvval 23569 mbfsup 25181 mbfinf 25182 brabgaf 31837 fmptcof2 31882 bnj1468 33857 subtr2 35200 mpobi123f 37030 eqrelf 37123 unielss 41967 fourierdlem31 44854 |
Copyright terms: Public domain | W3C validator |