![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 2002 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1661 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ⊤wtru 1654 Ⅎwnf 1879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 |
This theorem is referenced by: euf 2615 eufOLD 2616 sb8eu 2652 axextmo 2782 bm1.1OLD 2783 cleqh 2901 sbhypf 3441 ceqsexg 3523 elabgt 3537 elabgf 3538 elabg 3540 axrep1 4965 axrep3 4968 axrep4 4969 copsex2t 5147 copsex2g 5148 opelopabsb 5181 opeliunxp2 5464 ralxpf 5472 cbviota 6069 sb8iota 6071 fvopab5 6535 fmptco 6623 nfiso 6800 dfoprab4f 7461 opeliunxp2f 7574 xpf1o 8364 zfcndrep 9724 gsumcom2 18689 isfildlem 21989 cnextfvval 22197 mbfsup 23772 mbfinf 23773 brabgaf 29937 fmptcof2 29976 bnj1468 31433 subtr2 32822 bj-abbi 33271 bj-axrep1 33284 bj-axrep3 33286 bj-axrep4 33287 mpt2bi123f 34457 eqrelf 34520 fourierdlem31 41098 |
Copyright terms: Public domain | W3C validator |