| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbi | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1903 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1548 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1542 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: sbbib 2361 euf 2571 sb8eulem 2593 axextmo 2707 abbib 2800 cleqh 2860 cleqf 2923 ceqsexg 3603 elabgf 3625 axrep1 5216 axrep3 5219 axrep4OLD 5222 copsex2t 5430 opeliunxp2 5777 ralxpf 5785 cbviotaw 6444 cbviota 6446 sb8iota 6448 fvopab5 6962 fmptco 7062 nfiso 7256 dfoprab4f 7988 opeliunxp2f 8140 xpf1o 9052 zfcndrep 10505 gsumcom2 19887 isfildlem 23772 cnextfvval 23980 mbfsup 25592 mbfinf 25593 brabgaf 32589 fmptcof2 32639 bnj1468 34858 subtr2 36359 mpobi123f 38212 eqrelf 38302 unielss 43321 permaxrep 45109 fourierdlem31 46246 |
| Copyright terms: Public domain | W3C validator |