Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqex Structured version   Visualization version   GIF version

Theorem ceqex 3593
 Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.) (Proof shortened by BJ, 1-May-2019.)
Assertion
Ref Expression
ceqex (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqex
StepHypRef Expression
1 19.8a 2178 . . 3 ((𝑥 = 𝐴𝜑) → ∃𝑥(𝑥 = 𝐴𝜑))
21ex 416 . 2 (𝑥 = 𝐴 → (𝜑 → ∃𝑥(𝑥 = 𝐴𝜑)))
3 eqvisset 3458 . . . 4 (𝑥 = 𝐴𝐴 ∈ V)
4 alexeqg 3592 . . . 4 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
53, 4syl 17 . . 3 (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
6 sp 2180 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜑))
76com12 32 . . 3 (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜑))
85, 7sylbird 263 . 2 (𝑥 = 𝐴 → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜑))
92, 8impbid 215 1 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443 This theorem is referenced by:  ceqsexg  3594
 Copyright terms: Public domain W3C validator