| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqex | Structured version Visualization version GIF version | ||
| Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.) (Proof shortened by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| ceqex | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| 3 | eqvisset 3470 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | |
| 4 | alexeqg 3620 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| 6 | sp 2184 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜑)) | |
| 7 | 6 | com12 32 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜑)) |
| 8 | 5, 7 | sylbird 260 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 9 | 2, 8 | impbid 212 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: ceqsexg 3622 |
| Copyright terms: Public domain | W3C validator |