MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqex Structured version   Visualization version   GIF version

Theorem ceqex 3639
Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.) (Proof shortened by BJ, 1-May-2019.)
Assertion
Ref Expression
ceqex (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqex
StepHypRef Expression
1 19.8a 2175 . . 3 ((𝑥 = 𝐴𝜑) → ∃𝑥(𝑥 = 𝐴𝜑))
21ex 414 . 2 (𝑥 = 𝐴 → (𝜑 → ∃𝑥(𝑥 = 𝐴𝜑)))
3 eqvisset 3492 . . . 4 (𝑥 = 𝐴𝐴 ∈ V)
4 alexeqg 3638 . . . 4 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
53, 4syl 17 . . 3 (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
6 sp 2177 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜑))
76com12 32 . . 3 (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜑))
85, 7sylbird 260 . 2 (𝑥 = 𝐴 → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜑))
92, 8impbid 211 1 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  Vcvv 3475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477
This theorem is referenced by:  ceqsexg  3640
  Copyright terms: Public domain W3C validator