Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqex | Structured version Visualization version GIF version |
Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.) (Proof shortened by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
ceqex | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2174 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
2 | 1 | ex 413 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
3 | eqvisset 3449 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | |
4 | alexeqg 3581 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
6 | sp 2176 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜑)) | |
7 | 6 | com12 32 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜑)) |
8 | 5, 7 | sylbird 259 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜑)) |
9 | 2, 8 | impbid 211 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: ceqsexg 3583 |
Copyright terms: Public domain | W3C validator |