Proof of Theorem ceqsralt
| Step | Hyp | Ref
| Expression |
| 1 | | biimt 360 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
| 2 | | df-ral 3062 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
| 3 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 4 | 3 | pm5.32ri 575 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
| 5 | 4 | imbi1i 349 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ ((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑)) |
| 6 | | impexp 450 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
| 7 | | impexp 450 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
| 8 | 5, 6, 7 | 3bitr3i 301 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
| 9 | 8 | albii 1819 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
| 10 | | 19.21v 1939 |
. . . . 5
⊢
(∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| 11 | 2, 9, 10 | 3bitrri 298 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑)) |
| 12 | 1, 11 | bitrdi 287 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑))) |
| 13 | 12 | 3ad2ant3 1136 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑))) |
| 14 | | ceqsalt 3515 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 15 | 13, 14 | bitr3d 281 |
1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |