Step | Hyp | Ref
| Expression |
1 | | biimt 360 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
2 | | df-ral 3062 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
3 | | eleq1 2821 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
4 | 3 | pm5.32ri 576 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
5 | 4 | imbi1i 349 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ ((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑)) |
6 | | impexp 451 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
7 | | impexp 451 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
8 | 5, 6, 7 | 3bitr3i 300 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
9 | 8 | albii 1821 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
10 | | 19.21v 1942 |
. . . . 5
⊢
(∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
11 | 2, 9, 10 | 3bitrri 297 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑)) |
12 | 1, 11 | bitrdi 286 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑))) |
13 | 12 | 3ad2ant3 1135 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑))) |
14 | | ceqsalt 3505 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
15 | 13, 14 | bitr3d 280 |
1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |