MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralt Structured version   Visualization version   GIF version

Theorem ceqsralt 3439
Description: Restricted quantifier version of ceqsalt 3438. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsralt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsralt
StepHypRef Expression
1 df-ral 3066 . . . 4 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)))
2 eleq1 2825 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32pm5.32ri 579 . . . . . . 7 ((𝑥𝐵𝑥 = 𝐴) ↔ (𝐴𝐵𝑥 = 𝐴))
43imbi1i 353 . . . . . 6 (((𝑥𝐵𝑥 = 𝐴) → 𝜑) ↔ ((𝐴𝐵𝑥 = 𝐴) → 𝜑))
5 impexp 454 . . . . . 6 (((𝑥𝐵𝑥 = 𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥 = 𝐴𝜑)))
6 impexp 454 . . . . . 6 (((𝐴𝐵𝑥 = 𝐴) → 𝜑) ↔ (𝐴𝐵 → (𝑥 = 𝐴𝜑)))
74, 5, 63bitr3i 304 . . . . 5 ((𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 → (𝑥 = 𝐴𝜑)))
87albii 1827 . . . 4 (∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑)))
9 19.21v 1947 . . . 4 (∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
101, 8, 93bitri 300 . . 3 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
1110a1i 11 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
12 biimt 364 . . 3 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
13123ad2ant3 1137 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
14 ceqsalt 3438 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
1511, 13, 143bitr2d 310 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wnf 1791  wcel 2110  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066
This theorem is referenced by:  ceqsralvOLD  3446  cdleme32fva  38188
  Copyright terms: Public domain W3C validator