Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cgsex2g | Structured version Visualization version GIF version |
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cgsex2g.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) |
cgsex2g.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cgsex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsex2g.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpa 476 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | exlimivv 1931 | . 2 ⊢ (∃𝑥∃𝑦(𝜒 ∧ 𝜑) → 𝜓) |
4 | elisset 2815 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
5 | elisset 2815 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
6 | 4, 5 | anim12i 612 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
7 | exdistrv 1955 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
8 | 6, 7 | sylibr 233 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
9 | cgsex2g.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) | |
10 | 9 | 2eximi 1834 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜒) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦𝜒) |
12 | 1 | biimprcd 249 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) |
13 | 12 | ancld 550 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) |
14 | 13 | 2eximdv 1918 | . . 3 ⊢ (𝜓 → (∃𝑥∃𝑦𝜒 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) |
15 | 11, 14 | syl5com 31 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) |
16 | 3, 15 | impbid2 225 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-clel 2811 |
This theorem is referenced by: copsex2g 5410 |
Copyright terms: Public domain | W3C validator |