|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cgsex2g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| cgsex2g.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) | 
| cgsex2g.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cgsex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgsex2g.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | 
| 3 | 2 | exlimivv 1931 | . 2 ⊢ (∃𝑥∃𝑦(𝜒 ∧ 𝜑) → 𝜓) | 
| 4 | elisset 2822 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 5 | elisset 2822 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
| 6 | 4, 5 | anim12i 613 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | 
| 7 | exdistrv 1954 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
| 8 | 6, 7 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) | 
| 9 | cgsex2g.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) | |
| 10 | 9 | 2eximi 1835 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜒) | 
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦𝜒) | 
| 12 | 1 | biimprcd 250 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) | 
| 13 | 12 | ancld 550 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) | 
| 14 | 13 | 2eximdv 1918 | . . 3 ⊢ (𝜓 → (∃𝑥∃𝑦𝜒 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) | 
| 15 | 11, 14 | syl5com 31 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) | 
| 16 | 3, 15 | impbid2 226 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-clel 2815 | 
| This theorem is referenced by: copsex2g 5497 | 
| Copyright terms: Public domain | W3C validator |