MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2seteq Structured version   Visualization version   GIF version

Theorem class2seteq 3699
Description: Writing a set as a class abstraction. This theorem looks artificial but was added to characterize the class abstraction whose existence is proved in class2set 5352. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq (𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 3492 . 2 (𝐴𝑉𝐴 ∈ V)
2 ax-1 6 . . . . 5 (𝐴 ∈ V → (𝑥𝐴𝐴 ∈ V))
32ralrimiv 3145 . . . 4 (𝐴 ∈ V → ∀𝑥𝐴 𝐴 ∈ V)
4 rabid2 3464 . . . 4 (𝐴 = {𝑥𝐴𝐴 ∈ V} ↔ ∀𝑥𝐴 𝐴 ∈ V)
53, 4sylibr 233 . . 3 (𝐴 ∈ V → 𝐴 = {𝑥𝐴𝐴 ∈ V})
65eqcomd 2738 . 2 (𝐴 ∈ V → {𝑥𝐴𝐴 ∈ V} = 𝐴)
71, 6syl 17 1 (𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-v 3476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator