![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > class2seteq | Structured version Visualization version GIF version |
Description: Writing a set as a class abstraction. This theorem looks artificial but was added to characterize the class abstraction whose existence is proved in class2set 5373. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
Ref | Expression |
---|---|
class2seteq | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | ax-1 6 | . . 3 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | |
3 | 2 | ralrimiv 3151 | . 2 ⊢ (𝐴 ∈ V → ∀𝑥 ∈ 𝐴 𝐴 ∈ V) |
4 | rabid2im 3477 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐴 ∈ V → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V}) | |
5 | 4 | eqcomd 2746 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
6 | 1, 3, 5 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |