MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2seteq Structured version   Visualization version   GIF version

Theorem class2seteq 5272
Description: Equality theorem based on class2set 5271. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq (𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
2 ax-1 6 . . . . 5 (𝐴 ∈ V → (𝑥𝐴𝐴 ∈ V))
32ralrimiv 3106 . . . 4 (𝐴 ∈ V → ∀𝑥𝐴 𝐴 ∈ V)
4 rabid2 3307 . . . 4 (𝐴 = {𝑥𝐴𝐴 ∈ V} ↔ ∀𝑥𝐴 𝐴 ∈ V)
53, 4sylibr 233 . . 3 (𝐴 ∈ V → 𝐴 = {𝑥𝐴𝐴 ∈ V})
65eqcomd 2744 . 2 (𝐴 ∈ V → {𝑥𝐴𝐴 ∈ V} = 𝐴)
71, 6syl 17 1 (𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator