Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > class2seteq | Structured version Visualization version GIF version |
Description: Equality theorem based on class2set 5276. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
Ref | Expression |
---|---|
class2seteq | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | ax-1 6 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | |
3 | 2 | ralrimiv 3102 | . . . 4 ⊢ (𝐴 ∈ V → ∀𝑥 ∈ 𝐴 𝐴 ∈ V) |
4 | rabid2 3314 | . . . 4 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V}) |
6 | 5 | eqcomd 2744 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |