MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2seteq Structured version   Visualization version   GIF version

Theorem class2seteq 3678
Description: Writing a set as a class abstraction. This theorem looks artificial but was added to characterize the class abstraction whose existence is proved in class2set 5313. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq (𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
2 ax-1 6 . . 3 (𝐴 ∈ V → (𝑥𝐴𝐴 ∈ V))
32ralrimiv 3125 . 2 (𝐴 ∈ V → ∀𝑥𝐴 𝐴 ∈ V)
4 rabid2im 3441 . . 3 (∀𝑥𝐴 𝐴 ∈ V → 𝐴 = {𝑥𝐴𝐴 ∈ V})
54eqcomd 2736 . 2 (∀𝑥𝐴 𝐴 ∈ V → {𝑥𝐴𝐴 ∈ V} = 𝐴)
61, 3, 53syl 18 1 (𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator