Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedhb Structured version   Visualization version   GIF version

Theorem dedhb 3694
 Description: A deduction theorem for converting the inference ⊢ Ⅎ𝑥𝐴 => ⊢ 𝜑 into a closed theorem. Use nfa1 2151 and nfab 2984 to eliminate the hypothesis of the substitution instance 𝜓 of the inference. For converting the inference form into a deduction form, abidnf 3693 is useful. (Contributed by NM, 8-Dec-2006.)
Hypotheses
Ref Expression
dedhb.1 (𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))
dedhb.2 𝜓
Assertion
Ref Expression
dedhb (𝑥𝐴𝜑)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑥,𝑧)   𝐴(𝑥)

Proof of Theorem dedhb
StepHypRef Expression
1 dedhb.2 . 2 𝜓
2 abidnf 3693 . . . 4 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
32eqcomd 2827 . . 3 (𝑥𝐴𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴})
4 dedhb.1 . . 3 (𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))
53, 4syl 17 . 2 (𝑥𝐴 → (𝜑𝜓))
61, 5mpbiri 260 1 (𝑥𝐴𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208  ∀wal 1531   = wceq 1533   ∈ wcel 2110  {cab 2799  Ⅎwnfc 2961 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-12 2173  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator