![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelrdva | Structured version Visualization version GIF version |
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
Ref | Expression |
---|---|
nelrdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) |
Ref | Expression |
---|---|
nelrdva | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2732 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 𝐵) | |
2 | eleq1 2820 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
3 | 2 | anbi2d 628 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝐵 ∈ 𝐴))) |
4 | neeq1 3002 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝐵 ↔ 𝐵 ≠ 𝐵)) | |
5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵))) |
6 | nelrdva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) | |
7 | 5, 6 | vtoclg 3542 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵)) |
8 | 7 | anabsi7 668 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵) |
9 | 8 | neneqd 2944 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 = 𝐵) |
10 | 1, 9 | pm2.65da 814 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 |
This theorem is referenced by: ustfilxp 23938 metustfbas 24287 drngmxidl 32868 fourierdlem72 45193 |
Copyright terms: Public domain | W3C validator |