![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelrdva | Structured version Visualization version GIF version |
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
Ref | Expression |
---|---|
nelrdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) |
Ref | Expression |
---|---|
nelrdva | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2726 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 𝐵) | |
2 | eleq1 2813 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
3 | 2 | anbi2d 628 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝐵 ∈ 𝐴))) |
4 | neeq1 2992 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝐵 ↔ 𝐵 ≠ 𝐵)) | |
5 | 3, 4 | imbi12d 343 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵))) |
6 | nelrdva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) | |
7 | 5, 6 | vtoclg 3532 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵)) |
8 | 7 | anabsi7 669 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵) |
9 | 8 | neneqd 2934 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 = 𝐵) |
10 | 1, 9 | pm2.65da 815 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 |
This theorem is referenced by: ustfilxp 24161 metustfbas 24510 drngmxidl 33289 fourierdlem72 45704 |
Copyright terms: Public domain | W3C validator |