MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelrdva Structured version   Visualization version   GIF version

Theorem nelrdva 3635
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
nelrdva (𝜑 → ¬ 𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2739 . 2 ((𝜑𝐵𝐴) → 𝐵 = 𝐵)
2 eleq1 2826 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
32anbi2d 628 . . . . . 6 (𝑥 = 𝐵 → ((𝜑𝑥𝐴) ↔ (𝜑𝐵𝐴)))
4 neeq1 3005 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
53, 4imbi12d 344 . . . . 5 (𝑥 = 𝐵 → (((𝜑𝑥𝐴) → 𝑥𝐵) ↔ ((𝜑𝐵𝐴) → 𝐵𝐵)))
6 nelrdva.1 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
75, 6vtoclg 3495 . . . 4 (𝐵𝐴 → ((𝜑𝐵𝐴) → 𝐵𝐵))
87anabsi7 667 . . 3 ((𝜑𝐵𝐴) → 𝐵𝐵)
98neneqd 2947 . 2 ((𝜑𝐵𝐴) → ¬ 𝐵 = 𝐵)
101, 9pm2.65da 813 1 (𝜑 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943
This theorem is referenced by:  ustfilxp  23272  metustfbas  23619  fourierdlem72  43609
  Copyright terms: Public domain W3C validator