MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabid2im Structured version   Visualization version   GIF version

Theorem rabid2im 3451
Description: One direction of rabid2 3452 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025.)
Assertion
Ref Expression
rabid2im (∀𝑥𝐴 𝜑𝐴 = {𝑥𝐴𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabid2im
StepHypRef Expression
1 pm4.71 556 . . . 4 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴𝜑)))
21albii 1813 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
3 eqab 2864 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)) → 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
42, 3sylbi 216 . 2 (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
5 df-ral 3051 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
6 df-rab 3419 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
76eqeq2i 2738 . 2 (𝐴 = {𝑥𝐴𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
84, 5, 73imtr4i 291 1 (∀𝑥𝐴 𝜑𝐴 = {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  {cab 2702  wral 3050  {crab 3418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rab 3419
This theorem is referenced by:  class2seteq  3696  rabxm  4388
  Copyright terms: Public domain W3C validator