MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabid2im Structured version   Visualization version   GIF version

Theorem rabid2im 3453
Description: One direction of rabid2 3454 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025.)
Assertion
Ref Expression
rabid2im (∀𝑥𝐴 𝜑𝐴 = {𝑥𝐴𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabid2im
StepHypRef Expression
1 pm4.71 557 . . . 4 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴𝜑)))
21albii 1819 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
3 eqab 2874 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)) → 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
42, 3sylbi 217 . 2 (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
5 df-ral 3053 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
6 df-rab 3421 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
76eqeq2i 2749 . 2 (𝐴 = {𝑥𝐴𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
84, 5, 73imtr4i 292 1 (∀𝑥𝐴 𝜑𝐴 = {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2714  wral 3052  {crab 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421
This theorem is referenced by:  class2seteq  3692  rabxm  4370
  Copyright terms: Public domain W3C validator