![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2im | Structured version Visualization version GIF version |
Description: One direction of rabid2 3452 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025.) |
Ref | Expression |
---|---|
rabid2im | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 556 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | 1 | albii 1813 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
3 | eqab 2864 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
5 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
6 | df-rab 3419 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
7 | 6 | eqeq2i 2738 | . 2 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
8 | 4, 5, 7 | 3imtr4i 291 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3050 {crab 3418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rab 3419 |
This theorem is referenced by: class2seteq 3696 rabxm 4388 |
Copyright terms: Public domain | W3C validator |