| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2im | Structured version Visualization version GIF version | ||
| Description: One direction of rabid2 3454 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025.) |
| Ref | Expression |
|---|---|
| rabid2im | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | 1 | albii 1818 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 3 | eqab 2872 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 5 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 6 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 7 | 6 | eqeq2i 2747 | . 2 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 8 | 4, 5, 7 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3421 |
| This theorem is referenced by: class2seteq 3694 rabxm 4372 |
| Copyright terms: Public domain | W3C validator |