![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ddif | Structured version Visualization version GIF version |
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
ddif | ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | eldif 3921 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 708 | . . . 4 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
4 | 3 | con2bii 358 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ (V ∖ 𝐴)) |
5 | 1 | biantrur 532 | . . 3 ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) |
6 | 4, 5 | bitr2i 276 | . 2 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
7 | 6 | difeqri 4085 | 1 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ∖ cdif 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3446 df-dif 3914 |
This theorem is referenced by: complss 4107 dfun3 4226 dfin3 4227 invdif 4229 ssindif0 4424 difdifdir 4450 |
Copyright terms: Public domain | W3C validator |