Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ddif | Structured version Visualization version GIF version |
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
ddif | ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | eldif 3897 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 706 | . . . 4 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
4 | 3 | con2bii 358 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ (V ∖ 𝐴)) |
5 | 1 | biantrur 531 | . . 3 ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) |
6 | 4, 5 | bitr2i 275 | . 2 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
7 | 6 | difeqri 4059 | 1 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 |
This theorem is referenced by: complss 4081 dfun3 4199 dfin3 4200 invdif 4202 ssindif0 4397 difdifdir 4422 |
Copyright terms: Public domain | W3C validator |