MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ddif Structured version   Visualization version   GIF version

Theorem ddif 4071
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ddif (V ∖ (V ∖ 𝐴)) = 𝐴

Proof of Theorem ddif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . 5 𝑥 ∈ V
2 eldif 3897 . . . . 5 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 706 . . . 4 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43con2bii 358 . . 3 (𝑥𝐴 ↔ ¬ 𝑥 ∈ (V ∖ 𝐴))
51biantrur 531 . . 3 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
64, 5bitr2i 275 . 2 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥𝐴)
76difeqri 4059 1 (V ∖ (V ∖ 𝐴)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890
This theorem is referenced by:  complss  4081  dfun3  4199  dfin3  4200  invdif  4202  ssindif0  4397  difdifdir  4422
  Copyright terms: Public domain W3C validator