| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ddif | Structured version Visualization version GIF version | ||
| Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| ddif | ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | eldif 3910 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | . . . 4 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
| 4 | 3 | con2bii 357 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ (V ∖ 𝐴)) |
| 5 | 1 | biantrur 530 | . . 3 ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) |
| 6 | 4, 5 | bitr2i 276 | . 2 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
| 7 | 6 | difeqri 4076 | 1 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∖ cdif 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-dif 3903 |
| This theorem is referenced by: complss 4099 dfun3 4224 dfin3 4225 invdif 4227 ssindif0 4412 difdifdir 4440 |
| Copyright terms: Public domain | W3C validator |