MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ddif Structured version   Visualization version   GIF version

Theorem ddif 4116
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ddif (V ∖ (V ∖ 𝐴)) = 𝐴

Proof of Theorem ddif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3463 . . . . 5 𝑥 ∈ V
2 eldif 3936 . . . . 5 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 709 . . . 4 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43con2bii 357 . . 3 (𝑥𝐴 ↔ ¬ 𝑥 ∈ (V ∖ 𝐴))
51biantrur 530 . . 3 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
64, 5bitr2i 276 . 2 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥𝐴)
76difeqri 4103 1 (V ∖ (V ∖ 𝐴)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929
This theorem is referenced by:  complss  4126  dfun3  4251  dfin3  4252  invdif  4254  ssindif0  4439  difdifdir  4467
  Copyright terms: Public domain W3C validator