MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifi Structured version   Visualization version   GIF version

Theorem rexdifi 4119
Description: Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.)
Assertion
Ref Expression
rexdifi ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem rexdifi
StepHypRef Expression
1 df-rex 3143 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 df-ral 3142 . . 3 (∀𝑥𝐵 ¬ 𝜑 ↔ ∀𝑥(𝑥𝐵 → ¬ 𝜑))
3 nfa1 2154 . . . . 5 𝑥𝑥(𝑥𝐵 → ¬ 𝜑)
4 simprl 769 . . . . . . . 8 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → 𝑥𝐴)
5 con2 137 . . . . . . . . . . . 12 ((𝑥𝐵 → ¬ 𝜑) → (𝜑 → ¬ 𝑥𝐵))
65sps 2183 . . . . . . . . . . 11 (∀𝑥(𝑥𝐵 → ¬ 𝜑) → (𝜑 → ¬ 𝑥𝐵))
76com12 32 . . . . . . . . . 10 (𝜑 → (∀𝑥(𝑥𝐵 → ¬ 𝜑) → ¬ 𝑥𝐵))
87adantl 484 . . . . . . . . 9 ((𝑥𝐴𝜑) → (∀𝑥(𝑥𝐵 → ¬ 𝜑) → ¬ 𝑥𝐵))
98impcom 410 . . . . . . . 8 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → ¬ 𝑥𝐵)
104, 9eldifd 3944 . . . . . . 7 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → 𝑥 ∈ (𝐴𝐵))
11 simprr 771 . . . . . . 7 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → 𝜑)
1210, 11jca 514 . . . . . 6 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
1312ex 415 . . . . 5 (∀𝑥(𝑥𝐵 → ¬ 𝜑) → ((𝑥𝐴𝜑) → (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)))
143, 13eximd 2215 . . . 4 (∀𝑥(𝑥𝐵 → ¬ 𝜑) → (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑)))
1514impcom 410 . . 3 ((∃𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵 → ¬ 𝜑)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
161, 2, 15syl2anb 599 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 ¬ 𝜑) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
17 df-rex 3143 . 2 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
1816, 17sylibr 236 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1534  wex 1779  wcel 2113  wral 3137  wrex 3138  cdif 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-v 3495  df-dif 3936
This theorem is referenced by:  releldmdifi  7741
  Copyright terms: Public domain W3C validator