MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifi Structured version   Visualization version   GIF version

Theorem rexdifi 4080
Description: Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.)
Assertion
Ref Expression
rexdifi ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem rexdifi
StepHypRef Expression
1 df-rex 3070 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 df-ral 3069 . . 3 (∀𝑥𝐵 ¬ 𝜑 ↔ ∀𝑥(𝑥𝐵 → ¬ 𝜑))
3 nfa1 2148 . . . . 5 𝑥𝑥(𝑥𝐵 → ¬ 𝜑)
4 simprl 768 . . . . . . . 8 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → 𝑥𝐴)
5 con2 135 . . . . . . . . . . . 12 ((𝑥𝐵 → ¬ 𝜑) → (𝜑 → ¬ 𝑥𝐵))
65sps 2178 . . . . . . . . . . 11 (∀𝑥(𝑥𝐵 → ¬ 𝜑) → (𝜑 → ¬ 𝑥𝐵))
76com12 32 . . . . . . . . . 10 (𝜑 → (∀𝑥(𝑥𝐵 → ¬ 𝜑) → ¬ 𝑥𝐵))
87adantl 482 . . . . . . . . 9 ((𝑥𝐴𝜑) → (∀𝑥(𝑥𝐵 → ¬ 𝜑) → ¬ 𝑥𝐵))
98impcom 408 . . . . . . . 8 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → ¬ 𝑥𝐵)
104, 9eldifd 3898 . . . . . . 7 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → 𝑥 ∈ (𝐴𝐵))
11 simprr 770 . . . . . . 7 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → 𝜑)
1210, 11jca 512 . . . . . 6 ((∀𝑥(𝑥𝐵 → ¬ 𝜑) ∧ (𝑥𝐴𝜑)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
1312ex 413 . . . . 5 (∀𝑥(𝑥𝐵 → ¬ 𝜑) → ((𝑥𝐴𝜑) → (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)))
143, 13eximd 2209 . . . 4 (∀𝑥(𝑥𝐵 → ¬ 𝜑) → (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑)))
1514impcom 408 . . 3 ((∃𝑥(𝑥𝐴𝜑) ∧ ∀𝑥(𝑥𝐵 → ¬ 𝜑)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
161, 2, 15syl2anb 598 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 ¬ 𝜑) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
17 df-rex 3070 . 2 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
1816, 17sylibr 233 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537  wex 1782  wcel 2106  wral 3064  wrex 3065  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890
This theorem is referenced by:  releldmdifi  7886
  Copyright terms: Public domain W3C validator