MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3g Structured version   Visualization version   GIF version

Theorem 3sstr3g 4002
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3g.1 (𝜑𝐴𝐵)
3sstr3g.2 𝐴 = 𝐶
3sstr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3sstr3g (𝜑𝐶𝐷)

Proof of Theorem 3sstr3g
StepHypRef Expression
1 3sstr3g.2 . . 3 𝐴 = 𝐶
2 3sstr3g.1 . . 3 (𝜑𝐴𝐵)
31, 2eqsstrrid 3989 . 2 (𝜑𝐶𝐵)
4 3sstr3g.3 . 2 𝐵 = 𝐷
53, 4sseqtrdi 3990 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3934
This theorem is referenced by:  complss  4117  uniintsn  4952  fpwwe2lem12  10602  hmeocls  23662  hmeontr  23663  usgrumgruspgr  29116  chsscon3i  31397  pjss1coi  32099  mdslmd2i  32266  satffunlem2lem2  35400  ssbnd  37789  bnd2lem  37792  trclubgNEW  43614  nzss  44313
  Copyright terms: Public domain W3C validator