![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3g.2 | ⊢ 𝐴 = 𝐶 |
3sstr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3sstr3g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3sstr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | sseq12i 4012 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-in 3956 df-ss 3966 |
This theorem is referenced by: complss 4147 uniintsn 4994 fpwwe2lem12 10673 hmeocls 23692 hmeontr 23693 usgrumgruspgr 29015 chsscon3i 31291 pjss1coi 31993 mdslmd2i 32160 satffunlem2lem2 35049 ssbnd 37294 bnd2lem 37297 trclubgNEW 43079 nzss 43785 |
Copyright terms: Public domain | W3C validator |