Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3g.2 | ⊢ 𝐴 = 𝐶 |
3sstr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3sstr3g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3sstr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | sseq12i 3951 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: complss 4081 uniintsn 4918 fpwwe2lem12 10398 hmeocls 22919 hmeontr 22920 usgrumgruspgr 27550 chsscon3i 29823 pjss1coi 30525 mdslmd2i 30692 satffunlem2lem2 33368 ssbnd 35946 bnd2lem 35949 trclubgNEW 41226 nzss 41935 |
Copyright terms: Public domain | W3C validator |