MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3g Structured version   Visualization version   GIF version

Theorem 3sstr3g 3982
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3g.1 (𝜑𝐴𝐵)
3sstr3g.2 𝐴 = 𝐶
3sstr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3sstr3g (𝜑𝐶𝐷)

Proof of Theorem 3sstr3g
StepHypRef Expression
1 3sstr3g.2 . . 3 𝐴 = 𝐶
2 3sstr3g.1 . . 3 (𝜑𝐴𝐵)
31, 2eqsstrrid 3969 . 2 (𝜑𝐶𝐵)
4 3sstr3g.3 . 2 𝐵 = 𝐷
53, 4sseqtrdi 3970 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3914
This theorem is referenced by:  complss  4098  uniintsn  4933  fpwwe2lem12  10533  hmeocls  23683  hmeontr  23684  usgrumgruspgr  29160  chsscon3i  31441  pjss1coi  32143  mdslmd2i  32310  satffunlem2lem2  35450  ssbnd  37838  bnd2lem  37841  trclubgNEW  43721  nzss  44420
  Copyright terms: Public domain W3C validator