Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3g.2 | ⊢ 𝐴 = 𝐶 |
3sstr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3sstr3g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3sstr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | sseq12i 3962 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 |
This theorem is referenced by: complss 4093 uniintsn 4935 fpwwe2lem12 10499 hmeocls 23025 hmeontr 23026 usgrumgruspgr 27839 chsscon3i 30111 pjss1coi 30813 mdslmd2i 30980 satffunlem2lem2 33667 ssbnd 36051 bnd2lem 36054 trclubgNEW 41547 nzss 42256 |
Copyright terms: Public domain | W3C validator |