![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscon | Structured version Visualization version GIF version |
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sscon | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3821 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | con3d 150 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
3 | 2 | anim2d 605 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴))) |
4 | eldif 3808 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | eldif 3808 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 288 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐶 ∖ 𝐵) → 𝑥 ∈ (𝐶 ∖ 𝐴))) |
7 | 6 | ssrdv 3833 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∈ wcel 2164 ∖ cdif 3795 ⊆ wss 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 |
This theorem is referenced by: sscond 3976 complss 3980 sorpsscmpl 7213 sbthlem1 8345 sbthlem2 8346 cantnfp1lem1 8859 cantnfp1lem3 8861 isf34lem7 9523 isf34lem6 9524 setsres 16271 mplsubglem 19802 cctop 21188 clsval2 21232 ntrss 21237 hauscmplem 21587 ptbasin 21758 cfinfil 22074 csdfil 22075 uniioombllem5 23760 kur14lem6 31735 bj-2upln1upl 33529 dvasin 34034 sscon34b 39152 clsk3nimkb 39173 fourierdlem62 41173 caragendifcl 41516 |
Copyright terms: Public domain | W3C validator |