| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sscon | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3928 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 3 | 2 | anim2d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 4 | eldif 3912 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | eldif 3912 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐶 ∖ 𝐵) → 𝑥 ∈ (𝐶 ∖ 𝐴))) |
| 7 | 6 | ssrdv 3940 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 |
| This theorem is referenced by: sscond 4096 complss 4101 sscon34b 4254 sorpsscmpl 7667 sbthlem1 9000 sbthlem2 9001 cantnfp1lem1 9568 cantnfp1lem3 9570 isf34lem7 10267 isf34lem6 10268 setsres 17086 chnccat 18529 mplsubglem 21934 cctop 22919 clsval2 22963 ntrss 22968 hauscmplem 23319 ptbasin 23490 cfinfil 23806 csdfil 23807 uniioombllem5 25513 kur14lem6 35243 bj-2upln1upl 37057 dvasin 37743 readvrec2 42393 clsk3nimkb 44072 fourierdlem62 46205 caragendifcl 46551 |
| Copyright terms: Public domain | W3C validator |