MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscon Structured version   Visualization version   GIF version

Theorem sscon 4093
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
sscon (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3928 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21con3d 152 . . . 4 (𝐴𝐵 → (¬ 𝑥𝐵 → ¬ 𝑥𝐴))
32anim2d 612 . . 3 (𝐴𝐵 → ((𝑥𝐶 ∧ ¬ 𝑥𝐵) → (𝑥𝐶 ∧ ¬ 𝑥𝐴)))
4 eldif 3912 . . 3 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
5 eldif 3912 . . 3 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
63, 4, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐶𝐵) → 𝑥 ∈ (𝐶𝐴)))
76ssrdv 3940 1 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  cdif 3899  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-ss 3919
This theorem is referenced by:  sscond  4096  complss  4101  sscon34b  4254  sorpsscmpl  7667  sbthlem1  9000  sbthlem2  9001  cantnfp1lem1  9568  cantnfp1lem3  9570  isf34lem7  10267  isf34lem6  10268  setsres  17086  chnccat  18529  mplsubglem  21934  cctop  22919  clsval2  22963  ntrss  22968  hauscmplem  23319  ptbasin  23490  cfinfil  23806  csdfil  23807  uniioombllem5  25513  kur14lem6  35243  bj-2upln1upl  37057  dvasin  37743  readvrec2  42393  clsk3nimkb  44072  fourierdlem62  46205  caragendifcl  46551
  Copyright terms: Public domain W3C validator