![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscon | Structured version Visualization version GIF version |
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sscon | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3938 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | con3d 152 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
3 | 2 | anim2d 613 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴))) |
4 | eldif 3921 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | eldif 3921 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐶 ∖ 𝐵) → 𝑥 ∈ (𝐶 ∖ 𝐴))) |
7 | 6 | ssrdv 3951 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ∖ cdif 3908 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3446 df-dif 3914 df-in 3918 df-ss 3928 |
This theorem is referenced by: sscond 4102 complss 4107 sscon34b 4255 sorpsscmpl 7672 sbthlem1 9030 sbthlem2 9031 cantnfp1lem1 9619 cantnfp1lem3 9621 isf34lem7 10320 isf34lem6 10321 setsres 17055 mplsubglem 21421 cctop 22372 clsval2 22417 ntrss 22422 hauscmplem 22773 ptbasin 22944 cfinfil 23260 csdfil 23261 uniioombllem5 24967 kur14lem6 33862 bj-2upln1upl 35541 dvasin 36208 clsk3nimkb 42400 fourierdlem62 44495 caragendifcl 44841 |
Copyright terms: Public domain | W3C validator |