MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscon Structured version   Visualization version   GIF version

Theorem sscon 4109
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
sscon (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3943 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21con3d 152 . . . 4 (𝐴𝐵 → (¬ 𝑥𝐵 → ¬ 𝑥𝐴))
32anim2d 612 . . 3 (𝐴𝐵 → ((𝑥𝐶 ∧ ¬ 𝑥𝐵) → (𝑥𝐶 ∧ ¬ 𝑥𝐴)))
4 eldif 3927 . . 3 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
5 eldif 3927 . . 3 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
63, 4, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐶𝐵) → 𝑥 ∈ (𝐶𝐴)))
76ssrdv 3955 1 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  cdif 3914  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934
This theorem is referenced by:  sscond  4112  complss  4117  sscon34b  4270  sorpsscmpl  7713  sbthlem1  9057  sbthlem2  9058  cantnfp1lem1  9638  cantnfp1lem3  9640  isf34lem7  10339  isf34lem6  10340  setsres  17155  mplsubglem  21915  cctop  22900  clsval2  22944  ntrss  22949  hauscmplem  23300  ptbasin  23471  cfinfil  23787  csdfil  23788  uniioombllem5  25495  kur14lem6  35205  bj-2upln1upl  37019  dvasin  37705  readvrec2  42356  clsk3nimkb  44036  fourierdlem62  46173  caragendifcl  46519
  Copyright terms: Public domain W3C validator