| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sscon | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3924 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 3 | 2 | anim2d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 4 | eldif 3908 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | eldif 3908 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐶 ∖ 𝐵) → 𝑥 ∈ (𝐶 ∖ 𝐴))) |
| 7 | 6 | ssrdv 3936 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 |
| This theorem is referenced by: sscond 4095 complss 4100 sscon34b 4253 sorpsscmpl 7673 sbthlem1 9007 sbthlem2 9008 cantnfp1lem1 9575 cantnfp1lem3 9577 isf34lem7 10277 isf34lem6 10278 setsres 17091 chnccat 18534 mplsubglem 21937 cctop 22922 clsval2 22966 ntrss 22971 hauscmplem 23322 ptbasin 23493 cfinfil 23809 csdfil 23810 uniioombllem5 25516 kur14lem6 35276 bj-2upln1upl 37089 dvasin 37764 readvrec2 42479 clsk3nimkb 44157 fourierdlem62 46290 caragendifcl 46636 |
| Copyright terms: Public domain | W3C validator |