| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sscon | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3940 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 3 | 2 | anim2d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 4 | eldif 3924 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | eldif 3924 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐶 ∖ 𝐵) → 𝑥 ∈ (𝐶 ∖ 𝐴))) |
| 7 | 6 | ssrdv 3952 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 |
| This theorem is referenced by: sscond 4109 complss 4114 sscon34b 4267 sorpsscmpl 7710 sbthlem1 9051 sbthlem2 9052 cantnfp1lem1 9631 cantnfp1lem3 9633 isf34lem7 10332 isf34lem6 10333 setsres 17148 mplsubglem 21908 cctop 22893 clsval2 22937 ntrss 22942 hauscmplem 23293 ptbasin 23464 cfinfil 23780 csdfil 23781 uniioombllem5 25488 kur14lem6 35198 bj-2upln1upl 37012 dvasin 37698 readvrec2 42349 clsk3nimkb 44029 fourierdlem62 46166 caragendifcl 46512 |
| Copyright terms: Public domain | W3C validator |