Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossss Structured version   Visualization version   GIF version

Theorem cossss 38470
Description: Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
cossss (𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)

Proof of Theorem cossss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5133 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑦𝑥𝐵𝑦))
2 ssbr 5133 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑧𝑥𝐵𝑧))
31, 2anim12d 609 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑥𝐴𝑧) → (𝑥𝐵𝑦𝑥𝐵𝑧)))
43eximdv 1918 . . 3 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → ∃𝑥(𝑥𝐵𝑦𝑥𝐵𝑧)))
54ssopab2dv 5489 . 2 (𝐴𝐵 → {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐵𝑦𝑥𝐵𝑧)})
6 df-coss 38456 . 2 𝐴 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧)}
7 df-coss 38456 . 2 𝐵 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐵𝑦𝑥𝐵𝑧)}
85, 6, 73sstr4g 3983 1 (𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wss 3897   class class class wbr 5089  {copab 5151  ccoss 38223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3914  df-br 5090  df-opab 5152  df-coss 38456
This theorem is referenced by:  funALTVss  38745
  Copyright terms: Public domain W3C validator