![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossss | Structured version Visualization version GIF version |
Description: Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
Ref | Expression |
---|---|
cossss | ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5191 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
2 | ssbr 5191 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑧 → 𝑥𝐵𝑧)) | |
3 | 1, 2 | anim12d 610 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧))) |
4 | 3 | eximdv 1921 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧))) |
5 | 4 | ssopab2dv 5550 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)} ⊆ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧)}) |
6 | df-coss 37219 | . 2 ⊢ ≀ 𝐴 = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)} | |
7 | df-coss 37219 | . 2 ⊢ ≀ 𝐵 = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧)} | |
8 | 5, 6, 7 | 3sstr4g 4026 | 1 ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ⊆ wss 3947 class class class wbr 5147 {copab 5209 ≀ ccoss 36981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3954 df-ss 3964 df-br 5148 df-opab 5210 df-coss 37219 |
This theorem is referenced by: funALTVss 37507 |
Copyright terms: Public domain | W3C validator |