Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossss Structured version   Visualization version   GIF version

Theorem cossss 34491
Description: Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
cossss (𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)

Proof of Theorem cossss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 4888 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑦𝑥𝐵𝑦))
2 ssbr 4888 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑧𝑥𝐵𝑧))
31, 2anim12d 598 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑥𝐴𝑧) → (𝑥𝐵𝑦𝑥𝐵𝑧)))
43eximdv 2008 . . 3 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → ∃𝑥(𝑥𝐵𝑦𝑥𝐵𝑧)))
54ssopab2dv 5199 . 2 (𝐴𝐵 → {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐵𝑦𝑥𝐵𝑧)})
6 df-coss 34480 . 2 𝐴 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧)}
7 df-coss 34480 . 2 𝐵 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥𝐵𝑦𝑥𝐵𝑧)}
85, 6, 73sstr4g 3843 1 (𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1859  wss 3769   class class class wbr 4844  {copab 4906  ccoss 34291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-in 3776  df-ss 3783  df-br 4845  df-opab 4907  df-coss 34480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator