![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossss | Structured version Visualization version GIF version |
Description: Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
Ref | Expression |
---|---|
cossss | ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5000 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
2 | ssbr 5000 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑧 → 𝑥𝐵𝑧)) | |
3 | 1, 2 | anim12d 608 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧))) |
4 | 3 | eximdv 1893 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧))) |
5 | 4 | ssopab2dv 5318 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)} ⊆ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧)}) |
6 | df-coss 35140 | . 2 ⊢ ≀ 𝐴 = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)} | |
7 | df-coss 35140 | . 2 ⊢ ≀ 𝐵 = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧)} | |
8 | 5, 6, 7 | 3sstr4g 3928 | 1 ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1759 ⊆ wss 3854 class class class wbr 4956 {copab 5018 ≀ ccoss 34933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-in 3861 df-ss 3869 df-br 4957 df-opab 5019 df-coss 35140 |
This theorem is referenced by: funALTVss 35413 |
Copyright terms: Public domain | W3C validator |