| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie2g | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. This version of csbie 3900 avoids a disjointness condition on 𝑥, 𝐴 and 𝑥, 𝐷 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
| Ref | Expression |
|---|---|
| csbie2g.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| csbie2g.2 | ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| csbie2g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3866 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
| 2 | csbie2g.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 4 | csbie2g.2 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) | |
| 5 | 4 | eleq2d 2815 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
| 6 | 3, 5 | sbcie2g 3797 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐷)) |
| 7 | 6 | eqabcdv 2863 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} = 𝐷) |
| 8 | 1, 7 | eqtrid 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |