![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie2g | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3718 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
sbcie2g.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
sbcie2g.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcie2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3685 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | sbcie2g.2 | . 2 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
3 | sbsbc 3687 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
4 | sbcie2g.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 4 | sbievw 2041 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 3, 5 | bitr3i 269 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
7 | 1, 2, 6 | vtoclbg 3487 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 [wsb 2015 ∈ wcel 2050 [wsbc 3683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-sbc 3684 |
This theorem is referenced by: sbcel2gv 3746 csbie2g 3821 brab1 4978 bnj90 31640 bnj124 31790 riotasvd 35537 |
Copyright terms: Public domain | W3C validator |