Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcie2g | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3754 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
sbcie2g.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
sbcie2g.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcie2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3713 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | sbcie2g.2 | . 2 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
3 | sbsbc 3715 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
4 | sbcie2g.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 4 | sbievw 2097 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 3, 5 | bitr3i 276 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
7 | 1, 2, 6 | vtoclbg 3497 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2068 ∈ wcel 2108 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbcel2gv 3784 csbie2g 3871 brab1 5118 bnj90 32601 bnj124 32751 riotasvd 36897 |
Copyright terms: Public domain | W3C validator |