MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2g Structured version   Visualization version   GIF version

Theorem sbcie2g 3847
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3848 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
sbcie2g.1 (𝑥 = 𝑦 → (𝜑𝜓))
sbcie2g.2 (𝑦 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
sbcie2g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜒,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sbcie2g
StepHypRef Expression
1 dfsbcq 3806 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 sbcie2g.2 . 2 (𝑦 = 𝐴 → (𝜓𝜒))
3 sbsbc 3808 . . 3 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
4 sbcie2g.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
54sbievw 2093 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
63, 5bitr3i 277 . 2 ([𝑦 / 𝑥]𝜑𝜓)
71, 2, 6vtoclbg 3569 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  [wsb 2064  wcel 2108  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  sbcel2gv  3876  csbie2g  3964  brab1  5214  bnj90  34698  bnj124  34847  riotasvd  38912
  Copyright terms: Public domain W3C validator