Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) |
2 | | nfcsb1v 3853 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 |
3 | 2 | nfcri 2893 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 |
4 | | nfs1v 2155 |
. . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
5 | 3, 4 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ∧ [𝑧 / 𝑥]𝜑) |
6 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
7 | | csbeq1a 3842 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
8 | 6, 7 | eleq12d 2833 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴)) |
9 | | sbequ12 2247 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
10 | 8, 9 | anbi12d 630 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
11 | 1, 5, 10 | cbvabw 2813 |
. . 3
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ∧ [𝑧 / 𝑥]𝜑)} |
12 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦𝑧 |
13 | | cbvrabcsfw.1 |
. . . . . . 7
⊢
Ⅎ𝑦𝐴 |
14 | 12, 13 | nfcsbw 3855 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑥⦌𝐴 |
15 | 14 | nfcri 2893 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 |
16 | | cbvrabcsfw.3 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
17 | 16 | nfsbv 2328 |
. . . . 5
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
18 | 15, 17 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑦(𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ∧ [𝑧 / 𝑥]𝜑) |
19 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ 𝐵 ∧ 𝜓) |
20 | | id 22 |
. . . . . 6
⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) |
21 | | csbeq1 3831 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑦 / 𝑥⦌𝐴) |
22 | | vex 3426 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
23 | | cbvrabcsfw.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
24 | | cbvrabcsfw.5 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
25 | 22, 23, 24 | csbief 3863 |
. . . . . . 7
⊢
⦋𝑦 /
𝑥⦌𝐴 = 𝐵 |
26 | 21, 25 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ⦋𝑧 / 𝑥⦌𝐴 = 𝐵) |
27 | 20, 26 | eleq12d 2833 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ↔ 𝑦 ∈ 𝐵)) |
28 | | cbvrabcsfw.4 |
. . . . . 6
⊢
Ⅎ𝑥𝜓 |
29 | | cbvrabcsfw.6 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
30 | 28, 29 | sbhypf 3481 |
. . . . 5
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
31 | 27, 30 | anbi12d 630 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐵 ∧ 𝜓))) |
32 | 18, 19, 31 | cbvabw 2813 |
. . 3
⊢ {𝑧 ∣ (𝑧 ∈ ⦋𝑧 / 𝑥⦌𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜓)} |
33 | 11, 32 | eqtri 2766 |
. 2
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜓)} |
34 | | df-rab 3072 |
. 2
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
35 | | df-rab 3072 |
. 2
⊢ {𝑦 ∈ 𝐵 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜓)} |
36 | 33, 34, 35 | 3eqtr4i 2776 |
1
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |