MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabcsfw Structured version   Visualization version   GIF version

Theorem cbvrabcsfw 3965
Description: Version of cbvrabcsf 3969 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Andrew Salmon, 13-Jul-2011.) (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
cbvrabcsfw.1 𝑦𝐴
cbvrabcsfw.2 𝑥𝐵
cbvrabcsfw.3 𝑦𝜑
cbvrabcsfw.4 𝑥𝜓
cbvrabcsfw.5 (𝑥 = 𝑦𝐴 = 𝐵)
cbvrabcsfw.6 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabcsfw {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem cbvrabcsfw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . 4 𝑧(𝑥𝐴𝜑)
2 nfcsb1v 3946 . . . . . 6 𝑥𝑧 / 𝑥𝐴
32nfcri 2900 . . . . 5 𝑥 𝑧𝑧 / 𝑥𝐴
4 nfs1v 2157 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1898 . . . 4 𝑥(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 id 22 . . . . . 6 (𝑥 = 𝑧𝑥 = 𝑧)
7 csbeq1a 3935 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
86, 7eleq12d 2838 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
9 sbequ12 2252 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
108, 9anbi12d 631 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)))
111, 5, 10cbvabw 2816 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)}
12 nfcv 2908 . . . . . . 7 𝑦𝑧
13 cbvrabcsfw.1 . . . . . . 7 𝑦𝐴
1412, 13nfcsbw 3948 . . . . . 6 𝑦𝑧 / 𝑥𝐴
1514nfcri 2900 . . . . 5 𝑦 𝑧𝑧 / 𝑥𝐴
16 cbvrabcsfw.3 . . . . . 6 𝑦𝜑
1716nfsbv 2334 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1815, 17nfan 1898 . . . 4 𝑦(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
19 nfv 1913 . . . 4 𝑧(𝑦𝐵𝜓)
20 id 22 . . . . . 6 (𝑧 = 𝑦𝑧 = 𝑦)
21 csbeq1 3924 . . . . . . 7 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝑦 / 𝑥𝐴)
22 vex 3492 . . . . . . . 8 𝑦 ∈ V
23 cbvrabcsfw.2 . . . . . . . 8 𝑥𝐵
24 cbvrabcsfw.5 . . . . . . . 8 (𝑥 = 𝑦𝐴 = 𝐵)
2522, 23, 24csbief 3956 . . . . . . 7 𝑦 / 𝑥𝐴 = 𝐵
2621, 25eqtrdi 2796 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝐵)
2720, 26eleq12d 2838 . . . . 5 (𝑧 = 𝑦 → (𝑧𝑧 / 𝑥𝐴𝑦𝐵))
28 cbvrabcsfw.4 . . . . . 6 𝑥𝜓
29 cbvrabcsfw.6 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
3028, 29sbhypf 3556 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
3127, 30anbi12d 631 . . . 4 (𝑧 = 𝑦 → ((𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐵𝜓)))
3218, 19, 31cbvabw 2816 . . 3 {𝑧 ∣ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐵𝜓)}
3311, 32eqtri 2768 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐵𝜓)}
34 df-rab 3444 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
35 df-rab 3444 . 2 {𝑦𝐵𝜓} = {𝑦 ∣ (𝑦𝐵𝜓)}
3633, 34, 353eqtr4i 2778 1 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  [wsb 2064  wcel 2108  {cab 2717  wnfc 2893  {crab 3443  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922
This theorem is referenced by:  smfsup  46735  smfinflem  46738  smfinf  46739
  Copyright terms: Public domain W3C validator