![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabcdv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
eqabcdv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
eqabcdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabcdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
3 | 2 | eqabdv 2866 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
4 | 3 | eqcomd 2737 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 |
This theorem is referenced by: abidnf 3698 csbtt 3910 csbie2g 3936 csbvarg 4431 iinxsng 5091 predep 6331 fnsnfv 6970 enfin2i 10320 fin1a2lem11 10409 hashf1 14423 shftuz 15021 psrbaglefi 21705 psrbaglefiOLD 21706 vmappw 26857 addsrid 27687 mulsrid 27809 hdmap1fval 40971 hdmapfval 41002 hgmapfval 41061 |
Copyright terms: Public domain | W3C validator |