| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabcdv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| eqabcdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| 3 | 2 | eqabdv 2861 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| 4 | 3 | eqcomd 2735 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: abidnf 3673 csbtt 3879 csbie2g 3902 csbvarg 4397 iinxsng 5052 predep 6303 fnsnfv 6940 enfin2i 10274 fin1a2lem11 10363 hashf1 14422 shftuz 15035 psrbaglefi 21835 vmappw 27026 addsrid 27871 mulsrid 28016 hdmap1fval 41790 hdmapfval 41821 hgmapfval 41880 |
| Copyright terms: Public domain | W3C validator |