MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcdv Structured version   Visualization version   GIF version

Theorem eqabcdv 2867
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Hypothesis
Ref Expression
eqabcdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
eqabcdv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabcdv
StepHypRef Expression
1 eqabcdv.1 . . . 4 (𝜑 → (𝜓𝑥𝐴))
21bicomd 222 . . 3 (𝜑 → (𝑥𝐴𝜓))
32eqabdv 2866 . 2 (𝜑𝐴 = {𝑥𝜓})
43eqcomd 2737 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809
This theorem is referenced by:  abidnf  3698  csbtt  3910  csbie2g  3936  csbvarg  4431  iinxsng  5091  predep  6331  fnsnfv  6970  enfin2i  10320  fin1a2lem11  10409  hashf1  14423  shftuz  15021  psrbaglefi  21705  psrbaglefiOLD  21706  vmappw  26857  addsrid  27687  mulsrid  27809  hdmap1fval  40971  hdmapfval  41002  hgmapfval  41061
  Copyright terms: Public domain W3C validator