MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcdv Structured version   Visualization version   GIF version

Theorem eqabcdv 2862
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Hypothesis
Ref Expression
eqabcdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
eqabcdv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabcdv
StepHypRef Expression
1 eqabcdv.1 . . . 4 (𝜑 → (𝜓𝑥𝐴))
21bicomd 223 . . 3 (𝜑 → (𝑥𝐴𝜓))
32eqabdv 2861 . 2 (𝜑𝐴 = {𝑥𝜓})
43eqcomd 2735 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803
This theorem is referenced by:  abidnf  3673  csbtt  3879  csbie2g  3902  csbvarg  4397  iinxsng  5052  predep  6303  fnsnfv  6940  enfin2i  10274  fin1a2lem11  10363  hashf1  14422  shftuz  15035  psrbaglefi  21835  vmappw  27026  addsrid  27871  mulsrid  28016  hdmap1fval  41790  hdmapfval  41821  hgmapfval  41880
  Copyright terms: Public domain W3C validator