| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabcdv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| eqabcdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| 3 | 2 | eqabdv 2862 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| 4 | 3 | eqcomd 2736 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: abidnf 3676 csbtt 3882 csbie2g 3905 csbvarg 4400 iinxsng 5055 predep 6306 fnsnfv 6943 enfin2i 10281 fin1a2lem11 10370 hashf1 14429 shftuz 15042 psrbaglefi 21842 vmappw 27033 addsrid 27878 mulsrid 28023 hdmap1fval 41797 hdmapfval 41828 hgmapfval 41887 |
| Copyright terms: Public domain | W3C validator |