| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqabcdv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| eqabcdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| 3 | 2 | eqabdv 2861 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| 4 | 3 | eqcomd 2735 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: abidnf 3662 csbtt 3868 csbie2g 3891 csbvarg 4385 iinxsng 5037 predep 6278 fnsnfv 6902 enfin2i 10215 fin1a2lem11 10304 hashf1 14364 shftuz 14976 psrbaglefi 21833 vmappw 27024 addsrid 27876 mulsrid 28021 hdmap1fval 41775 hdmapfval 41806 hgmapfval 41865 |
| Copyright terms: Public domain | W3C validator |