MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcdv Structured version   Visualization version   GIF version

Theorem eqabcdv 2862
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Hypothesis
Ref Expression
eqabcdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
eqabcdv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabcdv
StepHypRef Expression
1 eqabcdv.1 . . . 4 (𝜑 → (𝜓𝑥𝐴))
21bicomd 223 . . 3 (𝜑 → (𝑥𝐴𝜓))
32eqabdv 2861 . 2 (𝜑𝐴 = {𝑥𝜓})
43eqcomd 2735 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803
This theorem is referenced by:  abidnf  3662  csbtt  3868  csbie2g  3891  csbvarg  4385  iinxsng  5037  predep  6278  fnsnfv  6902  enfin2i  10215  fin1a2lem11  10304  hashf1  14364  shftuz  14976  psrbaglefi  21833  vmappw  27024  addsrid  27876  mulsrid  28021  hdmap1fval  41775  hdmapfval  41806  hgmapfval  41865
  Copyright terms: Public domain W3C validator