MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcdv Structured version   Visualization version   GIF version

Theorem eqabcdv 2879
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Hypothesis
Ref Expression
eqabcdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
eqabcdv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabcdv
StepHypRef Expression
1 eqabcdv.1 . . . 4 (𝜑 → (𝜓𝑥𝐴))
21bicomd 223 . . 3 (𝜑 → (𝑥𝐴𝜓))
32eqabdv 2878 . 2 (𝜑𝐴 = {𝑥𝜓})
43eqcomd 2746 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  abidnf  3724  csbtt  3938  csbie2g  3964  csbvarg  4457  iinxsng  5111  predep  6362  fnsnfv  7001  enfin2i  10390  fin1a2lem11  10479  hashf1  14506  shftuz  15118  psrbaglefi  21969  vmappw  27177  addsrid  28015  mulsrid  28157  hdmap1fval  41753  hdmapfval  41784  hgmapfval  41843
  Copyright terms: Public domain W3C validator