![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabcdv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
eqabcdv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
eqabcdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabcdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
3 | 2 | eqabdv 2878 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
4 | 3 | eqcomd 2746 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: abidnf 3724 csbtt 3938 csbie2g 3964 csbvarg 4457 iinxsng 5111 predep 6362 fnsnfv 7001 enfin2i 10390 fin1a2lem11 10479 hashf1 14506 shftuz 15118 psrbaglefi 21969 vmappw 27177 addsrid 28015 mulsrid 28157 hdmap1fval 41753 hdmapfval 41784 hgmapfval 41843 |
Copyright terms: Public domain | W3C validator |