![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
csbie.1 | ⊢ 𝐴 ∈ V |
csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfcv 2941 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | csbie.2 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | csbief 3753 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ⦋csb 3728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-sbc 3634 df-csb 3729 |
This theorem is referenced by: pofun 5249 eqerlem 8016 mptnn0fsuppd 13052 fsum 14792 fsumcnv 14843 fsumshftm 14851 fsum0diag2 14853 fprod 15008 fprodcnv 15050 bpolyval 15116 ruclem1 15296 odval 18266 psrass1lem 19700 mamufval 20516 pm2mpval 20928 isibl 23873 dfitg 23877 dvfsumlem2 24131 fsumdvdsmul 25273 disjxpin 29918 poimirlem1 33899 poimirlem5 33903 poimirlem15 33913 poimirlem16 33914 poimirlem17 33915 poimirlem19 33917 poimirlem20 33918 poimirlem22 33920 poimirlem24 33922 poimirlem28 33926 fphpd 38166 monotuz 38291 oddcomabszz 38294 fnwe2val 38404 fnwe2lem1 38405 |
Copyright terms: Public domain | W3C validator |