MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3909
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3875 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2820 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3807 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2802 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2872 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2762 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  [wsbc 3765  csb 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-sbc 3766  df-csb 3875
This theorem is referenced by:  pofun  5579  eqerlem  8754  mptnn0fsuppd  14016  fsum  15736  fsumcnv  15789  fsumshftm  15797  fsum0diag2  15799  fprod  15957  fprodcnv  15999  bpolyval  16065  ruclem1  16249  odfval  19513  odval  19515  psrass1lem  21892  selvval  22073  mamufval  22330  pm2mpval  22733  isibl  25718  dfitg  25722  dvfsumlem2  25985  dvfsumlem2OLD  25986  fsumdvdsmul  27157  fsumdvdsmulOLD  27159  precsexlem3  28163  disjxpin  32569  poimirlem1  37645  poimirlem5  37649  poimirlem15  37659  poimirlem16  37660  poimirlem17  37661  poimirlem19  37663  poimirlem20  37664  poimirlem22  37666  poimirlem24  37668  poimirlem28  37672  evlselv  42610  fphpd  42839  monotuz  42965  oddcomabszz  42968  fnwe2val  43073  fnwe2lem1  43074  dfswapf2  49178  dfinito4  49386
  Copyright terms: Public domain W3C validator