| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbie.1 | ⊢ 𝐴 ∈ V |
| csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3863 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 5 | 2, 4 | sbcie 3795 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
| 6 | 5 | abbii 2796 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
| 7 | abid2 2865 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
| 8 | 1, 6, 7 | 3eqtri 2756 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: pofun 5564 eqerlem 8706 mptnn0fsuppd 13963 fsum 15686 fsumcnv 15739 fsumshftm 15747 fsum0diag2 15749 fprod 15907 fprodcnv 15949 bpolyval 16015 ruclem1 16199 odfval 19462 odval 19464 psrass1lem 21841 selvval 22022 mamufval 22279 pm2mpval 22682 isibl 25666 dfitg 25670 dvfsumlem2 25933 dvfsumlem2OLD 25934 fsumdvdsmul 27105 fsumdvdsmulOLD 27107 precsexlem3 28111 disjxpin 32517 poimirlem1 37615 poimirlem5 37619 poimirlem15 37629 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem22 37636 poimirlem24 37638 poimirlem28 37642 evlselv 42575 fphpd 42804 monotuz 42930 oddcomabszz 42933 fnwe2val 43038 fnwe2lem1 43039 dfswapf2 49250 dfinito4 49490 |
| Copyright terms: Public domain | W3C validator |