| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbie.1 | ⊢ 𝐴 ∈ V |
| csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3866 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 5 | 2, 4 | sbcie 3798 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
| 6 | 5 | abbii 2797 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
| 7 | abid2 2866 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
| 8 | 1, 6, 7 | 3eqtri 2757 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: pofun 5567 eqerlem 8709 mptnn0fsuppd 13970 fsum 15693 fsumcnv 15746 fsumshftm 15754 fsum0diag2 15756 fprod 15914 fprodcnv 15956 bpolyval 16022 ruclem1 16206 odfval 19469 odval 19471 psrass1lem 21848 selvval 22029 mamufval 22286 pm2mpval 22689 isibl 25673 dfitg 25677 dvfsumlem2 25940 dvfsumlem2OLD 25941 fsumdvdsmul 27112 fsumdvdsmulOLD 27114 precsexlem3 28118 disjxpin 32524 poimirlem1 37622 poimirlem5 37626 poimirlem15 37636 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem22 37643 poimirlem24 37645 poimirlem28 37649 evlselv 42582 fphpd 42811 monotuz 42937 oddcomabszz 42940 fnwe2val 43045 fnwe2lem1 43046 dfswapf2 49254 dfinito4 49494 |
| Copyright terms: Public domain | W3C validator |