MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3897
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3863 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2814 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3795 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2796 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2865 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2756 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  [wsbc 3753  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754  df-csb 3863
This theorem is referenced by:  pofun  5564  eqerlem  8706  mptnn0fsuppd  13963  fsum  15686  fsumcnv  15739  fsumshftm  15747  fsum0diag2  15749  fprod  15907  fprodcnv  15949  bpolyval  16015  ruclem1  16199  odfval  19462  odval  19464  psrass1lem  21841  selvval  22022  mamufval  22279  pm2mpval  22682  isibl  25666  dfitg  25670  dvfsumlem2  25933  dvfsumlem2OLD  25934  fsumdvdsmul  27105  fsumdvdsmulOLD  27107  precsexlem3  28111  disjxpin  32517  poimirlem1  37615  poimirlem5  37619  poimirlem15  37629  poimirlem16  37630  poimirlem17  37631  poimirlem19  37633  poimirlem20  37634  poimirlem22  37636  poimirlem24  37638  poimirlem28  37642  evlselv  42575  fphpd  42804  monotuz  42930  oddcomabszz  42933  fnwe2val  43038  fnwe2lem1  43039  dfswapf2  49250  dfinito4  49490
  Copyright terms: Public domain W3C validator