MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3888
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3854 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2814 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3786 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2796 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2865 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2756 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  [wsbc 3744  csb 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3745  df-csb 3854
This theorem is referenced by:  pofun  5549  eqerlem  8667  mptnn0fsuppd  13923  fsum  15645  fsumcnv  15698  fsumshftm  15706  fsum0diag2  15708  fprod  15866  fprodcnv  15908  bpolyval  15974  ruclem1  16158  odfval  19429  odval  19431  psrass1lem  21857  selvval  22038  mamufval  22295  pm2mpval  22698  isibl  25682  dfitg  25686  dvfsumlem2  25949  dvfsumlem2OLD  25950  fsumdvdsmul  27121  fsumdvdsmulOLD  27123  precsexlem3  28134  disjxpin  32550  poimirlem1  37600  poimirlem5  37604  poimirlem15  37614  poimirlem16  37615  poimirlem17  37616  poimirlem19  37618  poimirlem20  37619  poimirlem22  37621  poimirlem24  37623  poimirlem28  37627  evlselv  42560  fphpd  42789  monotuz  42914  oddcomabszz  42917  fnwe2val  43022  fnwe2lem1  43023  dfswapf2  49234  dfinito4  49474
  Copyright terms: Public domain W3C validator