MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3868
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3833 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2824 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3759 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2808 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2882 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2770 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717  df-csb 3833
This theorem is referenced by:  pofun  5521  eqerlem  8532  mptnn0fsuppd  13718  fsum  15432  fsumcnv  15485  fsumshftm  15493  fsum0diag2  15495  fprod  15651  fprodcnv  15693  bpolyval  15759  ruclem1  15940  odfval  19140  odval  19142  psrass1lemOLD  21143  psrass1lem  21146  selvval  21328  mamufval  21534  pm2mpval  21944  isibl  24930  dfitg  24934  dvfsumlem2  25191  fsumdvdsmul  26344  disjxpin  30927  poimirlem1  35778  poimirlem5  35782  poimirlem15  35792  poimirlem16  35793  poimirlem17  35794  poimirlem19  35796  poimirlem20  35797  poimirlem22  35799  poimirlem24  35801  poimirlem28  35805  fphpd  40638  monotuz  40763  oddcomabszz  40766  fnwe2val  40874  fnwe2lem1  40875
  Copyright terms: Public domain W3C validator