Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbie.1 | ⊢ 𝐴 ∈ V |
csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3829 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
5 | 2, 4 | sbcie 3754 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
6 | 5 | abbii 2809 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
7 | abid2 2881 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
8 | 1, 6, 7 | 3eqtri 2770 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: pofun 5512 eqerlem 8490 mptnn0fsuppd 13646 fsum 15360 fsumcnv 15413 fsumshftm 15421 fsum0diag2 15423 fprod 15579 fprodcnv 15621 bpolyval 15687 ruclem1 15868 odfval 19055 odval 19057 psrass1lemOLD 21053 psrass1lem 21056 selvval 21238 mamufval 21444 pm2mpval 21852 isibl 24835 dfitg 24839 dvfsumlem2 25096 fsumdvdsmul 26249 disjxpin 30828 poimirlem1 35705 poimirlem5 35709 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 poimirlem24 35728 poimirlem28 35732 fphpd 40554 monotuz 40679 oddcomabszz 40682 fnwe2val 40790 fnwe2lem1 40791 |
Copyright terms: Public domain | W3C validator |