MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3882
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3848 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2819 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3780 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2800 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2870 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2760 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3438  [wsbc 3738  csb 3847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-sbc 3739  df-csb 3848
This theorem is referenced by:  pofun  5547  eqerlem  8666  mptnn0fsuppd  13915  fsum  15637  fsumcnv  15690  fsumshftm  15698  fsum0diag2  15700  fprod  15858  fprodcnv  15900  bpolyval  15966  ruclem1  16150  odfval  19454  odval  19456  psrass1lem  21879  selvval  22060  mamufval  22317  pm2mpval  22720  isibl  25703  dfitg  25707  dvfsumlem2  25970  dvfsumlem2OLD  25971  fsumdvdsmul  27142  fsumdvdsmulOLD  27144  precsexlem3  28157  disjxpin  32579  poimirlem1  37671  poimirlem5  37675  poimirlem15  37685  poimirlem16  37686  poimirlem17  37687  poimirlem19  37689  poimirlem20  37690  poimirlem22  37692  poimirlem24  37694  poimirlem28  37698  evlselv  42695  fphpd  42923  monotuz  43048  oddcomabszz  43051  fnwe2val  43156  fnwe2lem1  43157  dfswapf2  49376  dfinito4  49616
  Copyright terms: Public domain W3C validator