| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbie.1 | ⊢ 𝐴 ∈ V |
| csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3854 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 5 | 2, 4 | sbcie 3786 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
| 6 | 5 | abbii 2796 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
| 7 | abid2 2865 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
| 8 | 1, 6, 7 | 3eqtri 2756 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 [wsbc 3744 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: pofun 5549 eqerlem 8667 mptnn0fsuppd 13923 fsum 15645 fsumcnv 15698 fsumshftm 15706 fsum0diag2 15708 fprod 15866 fprodcnv 15908 bpolyval 15974 ruclem1 16158 odfval 19429 odval 19431 psrass1lem 21857 selvval 22038 mamufval 22295 pm2mpval 22698 isibl 25682 dfitg 25686 dvfsumlem2 25949 dvfsumlem2OLD 25950 fsumdvdsmul 27121 fsumdvdsmulOLD 27123 precsexlem3 28134 disjxpin 32550 poimirlem1 37600 poimirlem5 37604 poimirlem15 37614 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem22 37621 poimirlem24 37623 poimirlem28 37627 evlselv 42560 fphpd 42789 monotuz 42914 oddcomabszz 42917 fnwe2val 43022 fnwe2lem1 43023 dfswapf2 49234 dfinito4 49474 |
| Copyright terms: Public domain | W3C validator |