MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3900
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3866 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2815 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3798 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2797 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2866 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2757 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  [wsbc 3756  csb 3865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3757  df-csb 3866
This theorem is referenced by:  pofun  5567  eqerlem  8709  mptnn0fsuppd  13970  fsum  15693  fsumcnv  15746  fsumshftm  15754  fsum0diag2  15756  fprod  15914  fprodcnv  15956  bpolyval  16022  ruclem1  16206  odfval  19469  odval  19471  psrass1lem  21848  selvval  22029  mamufval  22286  pm2mpval  22689  isibl  25673  dfitg  25677  dvfsumlem2  25940  dvfsumlem2OLD  25941  fsumdvdsmul  27112  fsumdvdsmulOLD  27114  precsexlem3  28118  disjxpin  32524  poimirlem1  37622  poimirlem5  37626  poimirlem15  37636  poimirlem16  37637  poimirlem17  37638  poimirlem19  37640  poimirlem20  37641  poimirlem22  37643  poimirlem24  37645  poimirlem28  37649  evlselv  42582  fphpd  42811  monotuz  42937  oddcomabszz  42940  fnwe2val  43045  fnwe2lem1  43046  dfswapf2  49254  dfinito4  49494
  Copyright terms: Public domain W3C validator