![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbie.1 | ⊢ 𝐴 ∈ V |
csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3887 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eleq2d 2811 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
5 | 2, 4 | sbcie 3813 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
6 | 5 | abbii 2794 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
7 | abid2 2863 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
8 | 1, 6, 7 | 3eqtri 2756 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2701 Vcvv 3466 [wsbc 3770 ⦋csb 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-sbc 3771 df-csb 3887 |
This theorem is referenced by: pofun 5597 eqerlem 8734 mptnn0fsuppd 13961 fsum 15664 fsumcnv 15717 fsumshftm 15725 fsum0diag2 15727 fprod 15883 fprodcnv 15925 bpolyval 15991 ruclem1 16173 odfval 19444 odval 19446 psrass1lemOLD 21804 psrass1lem 21807 selvval 21990 mamufval 22211 pm2mpval 22621 isibl 25619 dfitg 25623 dvfsumlem2 25885 dvfsumlem2OLD 25886 fsumdvdsmul 27046 fsumdvdsmulOLD 27048 precsexlem3 28026 disjxpin 32291 poimirlem1 36983 poimirlem5 36987 poimirlem15 36997 poimirlem16 36998 poimirlem17 36999 poimirlem19 37001 poimirlem20 37002 poimirlem22 37004 poimirlem24 37006 poimirlem28 37010 evlselv 41652 fphpd 42068 monotuz 42194 oddcomabszz 42197 fnwe2val 42305 fnwe2lem1 42306 |
Copyright terms: Public domain | W3C validator |