MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3864
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3829 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbie.1 . . . 4 𝐴 ∈ V
3 csbie.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
43eleq2d 2824 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
52, 4sbcie 3754 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐶)
65abbii 2809 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦𝑦𝐶}
7 abid2 2881 . 2 {𝑦𝑦𝐶} = 𝐶
81, 6, 73eqtri 2770 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712  df-csb 3829
This theorem is referenced by:  pofun  5512  eqerlem  8490  mptnn0fsuppd  13646  fsum  15360  fsumcnv  15413  fsumshftm  15421  fsum0diag2  15423  fprod  15579  fprodcnv  15621  bpolyval  15687  ruclem1  15868  odfval  19055  odval  19057  psrass1lemOLD  21053  psrass1lem  21056  selvval  21238  mamufval  21444  pm2mpval  21852  isibl  24835  dfitg  24839  dvfsumlem2  25096  fsumdvdsmul  26249  disjxpin  30828  poimirlem1  35705  poimirlem5  35709  poimirlem15  35719  poimirlem16  35720  poimirlem17  35721  poimirlem19  35723  poimirlem20  35724  poimirlem22  35726  poimirlem24  35728  poimirlem28  35732  fphpd  40554  monotuz  40679  oddcomabszz  40682  fnwe2val  40790  fnwe2lem1  40791
  Copyright terms: Public domain W3C validator