MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3825
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
StepHypRef Expression
1 csbie.1 . 2 𝐴 ∈ V
2 nfcv 2899 . 2 𝑥𝐶
3 csbie.2 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
41, 2, 3csbief 3824 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  Vcvv 3398  csb 3790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-v 3400  df-sbc 3681  df-csb 3791
This theorem is referenced by:  pofun  5460  eqerlem  8356  mptnn0fsuppd  13459  fsum  15172  fsumcnv  15223  fsumshftm  15231  fsum0diag2  15233  fprod  15389  fprodcnv  15431  bpolyval  15497  ruclem1  15678  odfval  18780  odval  18782  psrass1lemOLD  20755  psrass1lem  20758  selvval  20934  mamufval  21140  pm2mpval  21548  isibl  24520  dfitg  24524  dvfsumlem2  24781  fsumdvdsmul  25934  disjxpin  30503  poimirlem1  35423  poimirlem5  35427  poimirlem15  35437  poimirlem16  35438  poimirlem17  35439  poimirlem19  35441  poimirlem20  35442  poimirlem22  35444  poimirlem24  35446  poimirlem28  35450  fphpd  40232  monotuz  40357  oddcomabszz  40360  fnwe2val  40468  fnwe2lem1  40469
  Copyright terms: Public domain W3C validator