| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbie.1 | ⊢ 𝐴 ∈ V |
| csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3873 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 5 | 2, 4 | sbcie 3805 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
| 6 | 5 | abbii 2801 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
| 7 | abid2 2871 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
| 8 | 1, 6, 7 | 3eqtri 2761 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3457 [wsbc 3763 ⦋csb 3872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3764 df-csb 3873 |
| This theorem is referenced by: pofun 5576 eqerlem 8748 mptnn0fsuppd 14005 fsum 15723 fsumcnv 15776 fsumshftm 15784 fsum0diag2 15786 fprod 15944 fprodcnv 15986 bpolyval 16052 ruclem1 16234 odfval 19498 odval 19500 psrass1lem 21877 selvval 22058 mamufval 22315 pm2mpval 22718 isibl 25703 dfitg 25707 dvfsumlem2 25970 dvfsumlem2OLD 25971 fsumdvdsmul 27141 fsumdvdsmulOLD 27143 precsexlem3 28136 disjxpin 32502 poimirlem1 37566 poimirlem5 37570 poimirlem15 37580 poimirlem16 37581 poimirlem17 37582 poimirlem19 37584 poimirlem20 37585 poimirlem22 37587 poimirlem24 37589 poimirlem28 37593 evlselv 42535 fphpd 42764 monotuz 42890 oddcomabszz 42893 fnwe2val 42998 fnwe2lem1 42999 dfswapf2 48984 dfinito4 49171 |
| Copyright terms: Public domain | W3C validator |