Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbie.1 | ⊢ 𝐴 ∈ V |
csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
5 | 2, 4 | sbcie 3759 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
6 | 5 | abbii 2808 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
7 | abid2 2882 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
8 | 1, 6, 7 | 3eqtri 2770 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: pofun 5521 eqerlem 8532 mptnn0fsuppd 13718 fsum 15432 fsumcnv 15485 fsumshftm 15493 fsum0diag2 15495 fprod 15651 fprodcnv 15693 bpolyval 15759 ruclem1 15940 odfval 19140 odval 19142 psrass1lemOLD 21143 psrass1lem 21146 selvval 21328 mamufval 21534 pm2mpval 21944 isibl 24930 dfitg 24934 dvfsumlem2 25191 fsumdvdsmul 26344 disjxpin 30927 poimirlem1 35778 poimirlem5 35782 poimirlem15 35792 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 poimirlem22 35799 poimirlem24 35801 poimirlem28 35805 fphpd 40638 monotuz 40763 oddcomabszz 40766 fnwe2val 40874 fnwe2lem1 40875 |
Copyright terms: Public domain | W3C validator |