Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
csbie.1 | ⊢ 𝐴 ∈ V |
csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | csbie.2 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | csbief 3824 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ⦋csb 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-v 3400 df-sbc 3681 df-csb 3791 |
This theorem is referenced by: pofun 5460 eqerlem 8356 mptnn0fsuppd 13459 fsum 15172 fsumcnv 15223 fsumshftm 15231 fsum0diag2 15233 fprod 15389 fprodcnv 15431 bpolyval 15497 ruclem1 15678 odfval 18780 odval 18782 psrass1lemOLD 20755 psrass1lem 20758 selvval 20934 mamufval 21140 pm2mpval 21548 isibl 24520 dfitg 24524 dvfsumlem2 24781 fsumdvdsmul 25934 disjxpin 30503 poimirlem1 35423 poimirlem5 35427 poimirlem15 35437 poimirlem16 35438 poimirlem17 35439 poimirlem19 35441 poimirlem20 35442 poimirlem22 35444 poimirlem24 35446 poimirlem28 35450 fphpd 40232 monotuz 40357 oddcomabszz 40360 fnwe2val 40468 fnwe2lem1 40469 |
Copyright terms: Public domain | W3C validator |