| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbie.1 | ⊢ 𝐴 ∈ V |
| csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3849 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbie.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | csbie.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 5 | 2, 4 | sbcie 3781 | . . 3 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) |
| 6 | 5 | abbii 2797 | . 2 ⊢ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ 𝑦 ∈ 𝐶} |
| 7 | abid2 2866 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐶} = 𝐶 | |
| 8 | 1, 6, 7 | 3eqtri 2757 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {cab 2708 Vcvv 3434 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: pofun 5540 eqerlem 8652 mptnn0fsuppd 13897 fsum 15619 fsumcnv 15672 fsumshftm 15680 fsum0diag2 15682 fprod 15840 fprodcnv 15882 bpolyval 15948 ruclem1 16132 odfval 19437 odval 19439 psrass1lem 21862 selvval 22043 mamufval 22300 pm2mpval 22703 isibl 25686 dfitg 25690 dvfsumlem2 25953 dvfsumlem2OLD 25954 fsumdvdsmul 27125 fsumdvdsmulOLD 27127 precsexlem3 28140 disjxpin 32558 poimirlem1 37640 poimirlem5 37644 poimirlem15 37654 poimirlem16 37655 poimirlem17 37656 poimirlem19 37658 poimirlem20 37659 poimirlem22 37661 poimirlem24 37663 poimirlem28 37667 evlselv 42599 fphpd 42828 monotuz 42953 oddcomabszz 42956 fnwe2val 43061 fnwe2lem1 43062 dfswapf2 49272 dfinito4 49512 |
| Copyright terms: Public domain | W3C validator |