Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbie2 | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
Ref | Expression |
---|---|
csbie2t.1 | ⊢ 𝐴 ∈ V |
csbie2t.2 | ⊢ 𝐵 ∈ V |
csbie2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
csbie2 | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie2.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | gen2 1804 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | csbie2t.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | csbie2t 3870 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ⦋csb 3829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-v 3425 df-sbc 3713 df-csb 3830 |
This theorem is referenced by: fsumcnv 15388 fprodcnv 15596 dfrhm2 19851 mamufval 21419 mvmulfval 21574 vtxdgfval 27712 rnghmval 45310 |
Copyright terms: Public domain | W3C validator |