MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2 Structured version   Visualization version   GIF version

Theorem csbie2 3781
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
Hypotheses
Ref Expression
csbie2t.1 𝐴 ∈ V
csbie2t.2 𝐵 ∈ V
csbie2.3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
csbie2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem csbie2
StepHypRef Expression
1 csbie2.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
21gen2 1840 . 2 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
3 csbie2t.1 . . 3 𝐴 ∈ V
4 csbie2t.2 . . 3 𝐵 ∈ V
53, 4csbie2t 3780 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
62, 5ax-mp 5 1 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wal 1599   = wceq 1601  wcel 2107  Vcvv 3398  csb 3751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-v 3400  df-sbc 3653  df-csb 3752
This theorem is referenced by:  fsumcnv  14909  fprodcnv  15116  dfrhm2  19106  mamufval  20595  mvmulfval  20753  vtxdgfval  26815  rnghmval  42910
  Copyright terms: Public domain W3C validator