![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbie2 | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
Ref | Expression |
---|---|
csbie2t.1 | ⊢ 𝐴 ∈ V |
csbie2t.2 | ⊢ 𝐵 ∈ V |
csbie2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
csbie2 | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie2.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | gen2 1791 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | csbie2t.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | csbie2t 3933 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3473 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: fsumcnv 15752 fprodcnv 15960 rnghmval 20379 dfrhm2 20413 mamufval 22300 mvmulfval 22457 vtxdgfval 29294 |
Copyright terms: Public domain | W3C validator |