| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbie2 | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
| Ref | Expression |
|---|---|
| csbie2t.1 | ⊢ 𝐴 ∈ V |
| csbie2t.2 | ⊢ 𝐵 ∈ V |
| csbie2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| csbie2 | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbie2.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
| 3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | csbie2t.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | csbie2t 3885 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
| 6 | 2, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ⦋csb 3847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-v 3440 df-sbc 3739 df-csb 3848 |
| This theorem is referenced by: fsumcnv 15690 fprodcnv 15900 rnghmval 20368 dfrhm2 20402 mamufval 22317 mvmulfval 22467 vtxdgfval 29457 grtri 48054 |
| Copyright terms: Public domain | W3C validator |