Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemccea Structured version   Visualization version   GIF version

Theorem dalemccea 39648
Description: Lemma for dath 39701. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemccea (𝜓𝑐𝐴)

Proof of Theorem dalemccea
StepHypRef Expression
1 da.ps0 . 2 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2 simp1l 1198 . 2 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) → 𝑐𝐴)
31, 2sylbi 217 1 (𝜓𝑐𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalemcceb  39654  dalemswapyzps  39655  dalemrotps  39656  dalemcjden  39657  dalem23  39661  dalem24  39662  dalem25  39663  dalem27  39664  dalem28  39665  dalem38  39675  dalem39  39676  dalem44  39681  dalem51  39688  dalem56  39693
  Copyright terms: Public domain W3C validator