| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemccea | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39701. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Ref | Expression |
|---|---|
| dalemccea | ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | da.ps0 | . 2 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | simp1l 1198 | . 2 ⊢ (((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) → 𝑐 ∈ 𝐴) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dalemcceb 39654 dalemswapyzps 39655 dalemrotps 39656 dalemcjden 39657 dalem23 39661 dalem24 39662 dalem25 39663 dalem27 39664 dalem28 39665 dalem38 39675 dalem39 39676 dalem44 39681 dalem51 39688 dalem56 39693 |
| Copyright terms: Public domain | W3C validator |