Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemccea | Structured version Visualization version GIF version |
Description: Lemma for dath 37776. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Ref | Expression |
---|---|
dalemccea | ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . 2 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | simp1l 1195 | . 2 ⊢ (((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) → 𝑐 ∈ 𝐴) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2101 ≠ wne 2938 class class class wbr 5077 (class class class)co 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: dalemcceb 37729 dalemswapyzps 37730 dalemrotps 37731 dalemcjden 37732 dalem23 37736 dalem24 37737 dalem25 37738 dalem27 37739 dalem28 37740 dalem38 37750 dalem39 37751 dalem44 37756 dalem51 37763 dalem56 37768 |
Copyright terms: Public domain | W3C validator |