Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem27 Structured version   Visualization version   GIF version

Theorem dalem27 37707
Description: Lemma for dath 37744. Show that the line 𝐺𝑃 intersects the dummy center of perspectivity 𝑐. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem27 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐺 𝑃))

Proof of Theorem dalem27
StepHypRef Expression
1 dalem23.g . . 3 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
2 dalem.ph . . . . . 6 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
32dalemkelat 37632 . . . . 5 (𝜑𝐾 ∈ Lat)
433ad2ant1 1132 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
52dalemkehl 37631 . . . . . 6 (𝜑𝐾 ∈ HL)
653ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
7 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
87dalemccea 37691 . . . . . 6 (𝜓𝑐𝐴)
983ad2ant3 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
102dalempea 37634 . . . . . 6 (𝜑𝑃𝐴)
11103ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
12 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
13 dalem.j . . . . . 6 = (join‘𝐾)
14 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
1512, 13, 14hlatjcl 37375 . . . . 5 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
166, 9, 11, 15syl3anc 1370 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
177dalemddea 37692 . . . . . 6 (𝜓𝑑𝐴)
18173ad2ant3 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
192dalemsea 37637 . . . . . 6 (𝜑𝑆𝐴)
20193ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2112, 13, 14hlatjcl 37375 . . . . 5 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
226, 18, 20, 21syl3anc 1370 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
23 dalem.l . . . . 5 = (le‘𝐾)
24 dalem23.m . . . . 5 = (meet‘𝐾)
2512, 23, 24latmle1 18178 . . . 4 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑐 𝑃))
264, 16, 22, 25syl3anc 1370 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑐 𝑃))
271, 26eqbrtrid 5114 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑐 𝑃))
28 dalem23.o . . . 4 𝑂 = (LPlanes‘𝐾)
29 dalem23.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
30 dalem23.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
312, 23, 13, 14, 7, 24, 28, 29, 30, 1dalem23 37704 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
322, 23, 13, 14, 28, 29dalemply 37662 . . . . 5 (𝜑𝑃 𝑌)
33323ad2ant1 1132 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 𝑌)
342, 23, 13, 14, 7, 24, 28, 29, 30, 1dalem24 37705 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
35 nbrne2 5099 . . . . 5 ((𝑃 𝑌 ∧ ¬ 𝐺 𝑌) → 𝑃𝐺)
3635necomd 3001 . . . 4 ((𝑃 𝑌 ∧ ¬ 𝐺 𝑌) → 𝐺𝑃)
3733, 34, 36syl2anc 584 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝑃)
3823, 13, 14hlatexch2 37404 . . 3 ((𝐾 ∈ HL ∧ (𝐺𝐴𝑐𝐴𝑃𝐴) ∧ 𝐺𝑃) → (𝐺 (𝑐 𝑃) → 𝑐 (𝐺 𝑃)))
396, 31, 9, 11, 37, 38syl131anc 1382 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 (𝑐 𝑃) → 𝑐 (𝐺 𝑃)))
4027, 39mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐺 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6431  (class class class)co 7269  Basecbs 16908  lecple 16965  joincjn 18025  meetcmee 18026  Latclat 18145  Atomscatm 37271  HLchlt 37358  LPlanesclpl 37500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-proset 18009  df-poset 18027  df-plt 18044  df-lub 18060  df-glb 18061  df-join 18062  df-meet 18063  df-p0 18139  df-lat 18146  df-clat 18213  df-oposet 37184  df-ol 37186  df-oml 37187  df-covers 37274  df-ats 37275  df-atl 37306  df-cvlat 37330  df-hlat 37359  df-llines 37506  df-lplanes 37507
This theorem is referenced by:  dalem28  37708  dalem32  37712  dalem51  37731  dalem52  37732
  Copyright terms: Public domain W3C validator