Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem27 | Structured version Visualization version GIF version |
Description: Lemma for dath 37744. Show that the line 𝐺𝑃 intersects the dummy center of perspectivity 𝑐. (Contributed by NM, 8-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem23.m | ⊢ ∧ = (meet‘𝐾) |
dalem23.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem23.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem23.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem23.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
Ref | Expression |
---|---|
dalem27 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem23.g | . . 3 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
2 | dalem.ph | . . . . . 6 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | 2 | dalemkelat 37632 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
4 | 3 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
5 | 2 | dalemkehl 37631 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
6 | 5 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
7 | dalem.ps | . . . . . . 7 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
8 | 7 | dalemccea 37691 | . . . . . 6 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
9 | 8 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
10 | 2 | dalempea 37634 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | 10 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ∈ 𝐴) |
12 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | dalem.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
14 | dalem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 12, 13, 14 | hlatjcl 37375 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
16 | 6, 9, 11, 15 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
17 | 7 | dalemddea 37692 | . . . . . 6 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
18 | 17 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
19 | 2 | dalemsea 37637 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
20 | 19 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑆 ∈ 𝐴) |
21 | 12, 13, 14 | hlatjcl 37375 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
22 | 6, 18, 20, 21 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
23 | dalem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
24 | dalem23.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
25 | 12, 23, 24 | latmle1 18178 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑐 ∨ 𝑃)) |
26 | 4, 16, 22, 25 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑐 ∨ 𝑃)) |
27 | 1, 26 | eqbrtrid 5114 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≤ (𝑐 ∨ 𝑃)) |
28 | dalem23.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
29 | dalem23.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
30 | dalem23.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
31 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem23 37704 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
32 | 2, 23, 13, 14, 28, 29 | dalemply 37662 | . . . . 5 ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
33 | 32 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ≤ 𝑌) |
34 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem24 37705 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐺 ≤ 𝑌) |
35 | nbrne2 5099 | . . . . 5 ⊢ ((𝑃 ≤ 𝑌 ∧ ¬ 𝐺 ≤ 𝑌) → 𝑃 ≠ 𝐺) | |
36 | 35 | necomd 3001 | . . . 4 ⊢ ((𝑃 ≤ 𝑌 ∧ ¬ 𝐺 ≤ 𝑌) → 𝐺 ≠ 𝑃) |
37 | 33, 34, 36 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝑃) |
38 | 23, 13, 14 | hlatexch2 37404 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝐺 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝐺 ≠ 𝑃) → (𝐺 ≤ (𝑐 ∨ 𝑃) → 𝑐 ≤ (𝐺 ∨ 𝑃))) |
39 | 6, 31, 9, 11, 37, 38 | syl131anc 1382 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ≤ (𝑐 ∨ 𝑃) → 𝑐 ≤ (𝐺 ∨ 𝑃))) |
40 | 27, 39 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 lecple 16965 joincjn 18025 meetcmee 18026 Latclat 18145 Atomscatm 37271 HLchlt 37358 LPlanesclpl 37500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-proset 18009 df-poset 18027 df-plt 18044 df-lub 18060 df-glb 18061 df-join 18062 df-meet 18063 df-p0 18139 df-lat 18146 df-clat 18213 df-oposet 37184 df-ol 37186 df-oml 37187 df-covers 37274 df-ats 37275 df-atl 37306 df-cvlat 37330 df-hlat 37359 df-llines 37506 df-lplanes 37507 |
This theorem is referenced by: dalem28 37708 dalem32 37712 dalem51 37731 dalem52 37732 |
Copyright terms: Public domain | W3C validator |