Step | Hyp | Ref
| Expression |
1 | | dalem23.g |
. . 3
β’ πΊ = ((π β¨ π) β§ (π β¨ π)) |
2 | | dalem.ph |
. . . . . 6
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π
) β§ Β¬ πΆ β€ (π
β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π
β¨ π))))) |
3 | 2 | dalemkelat 38495 |
. . . . 5
β’ (π β πΎ β Lat) |
4 | 3 | 3ad2ant1 1134 |
. . . 4
β’ ((π β§ π = π β§ π) β πΎ β Lat) |
5 | 2 | dalemkehl 38494 |
. . . . . 6
β’ (π β πΎ β HL) |
6 | 5 | 3ad2ant1 1134 |
. . . . 5
β’ ((π β§ π = π β§ π) β πΎ β HL) |
7 | | dalem.ps |
. . . . . . 7
β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
8 | 7 | dalemccea 38554 |
. . . . . 6
β’ (π β π β π΄) |
9 | 8 | 3ad2ant3 1136 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π΄) |
10 | 2 | dalempea 38497 |
. . . . . 6
β’ (π β π β π΄) |
11 | 10 | 3ad2ant1 1134 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π΄) |
12 | | eqid 2733 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
13 | | dalem.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
14 | | dalem.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
15 | 12, 13, 14 | hlatjcl 38237 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
16 | 6, 9, 11, 15 | syl3anc 1372 |
. . . 4
β’ ((π β§ π = π β§ π) β (π β¨ π) β (BaseβπΎ)) |
17 | 7 | dalemddea 38555 |
. . . . . 6
β’ (π β π β π΄) |
18 | 17 | 3ad2ant3 1136 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π΄) |
19 | 2 | dalemsea 38500 |
. . . . . 6
β’ (π β π β π΄) |
20 | 19 | 3ad2ant1 1134 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π΄) |
21 | 12, 13, 14 | hlatjcl 38237 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
22 | 6, 18, 20, 21 | syl3anc 1372 |
. . . 4
β’ ((π β§ π = π β§ π) β (π β¨ π) β (BaseβπΎ)) |
23 | | dalem.l |
. . . . 5
β’ β€ =
(leβπΎ) |
24 | | dalem23.m |
. . . . 5
β’ β§ =
(meetβπΎ) |
25 | 12, 23, 24 | latmle1 18417 |
. . . 4
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ (π β¨ π) β (BaseβπΎ)) β ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) |
26 | 4, 16, 22, 25 | syl3anc 1372 |
. . 3
β’ ((π β§ π = π β§ π) β ((π β¨ π) β§ (π β¨ π)) β€ (π β¨ π)) |
27 | 1, 26 | eqbrtrid 5184 |
. 2
β’ ((π β§ π = π β§ π) β πΊ β€ (π β¨ π)) |
28 | | dalem23.o |
. . . 4
β’ π = (LPlanesβπΎ) |
29 | | dalem23.y |
. . . 4
β’ π = ((π β¨ π) β¨ π
) |
30 | | dalem23.z |
. . . 4
β’ π = ((π β¨ π) β¨ π) |
31 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem23 38567 |
. . 3
β’ ((π β§ π = π β§ π) β πΊ β π΄) |
32 | 2, 23, 13, 14, 28, 29 | dalemply 38525 |
. . . . 5
β’ (π β π β€ π) |
33 | 32 | 3ad2ant1 1134 |
. . . 4
β’ ((π β§ π = π β§ π) β π β€ π) |
34 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem24 38568 |
. . . 4
β’ ((π β§ π = π β§ π) β Β¬ πΊ β€ π) |
35 | | nbrne2 5169 |
. . . . 5
β’ ((π β€ π β§ Β¬ πΊ β€ π) β π β πΊ) |
36 | 35 | necomd 2997 |
. . . 4
β’ ((π β€ π β§ Β¬ πΊ β€ π) β πΊ β π) |
37 | 33, 34, 36 | syl2anc 585 |
. . 3
β’ ((π β§ π = π β§ π) β πΊ β π) |
38 | 23, 13, 14 | hlatexch2 38267 |
. . 3
β’ ((πΎ β HL β§ (πΊ β π΄ β§ π β π΄ β§ π β π΄) β§ πΊ β π) β (πΊ β€ (π β¨ π) β π β€ (πΊ β¨ π))) |
39 | 6, 31, 9, 11, 37, 38 | syl131anc 1384 |
. 2
β’ ((π β§ π = π β§ π) β (πΊ β€ (π β¨ π) β π β€ (πΊ β¨ π))) |
40 | 27, 39 | mpd 15 |
1
β’ ((π β§ π = π β§ π) β π β€ (πΊ β¨ π)) |