![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem27 | Structured version Visualization version GIF version |
Description: Lemma for dath 35810. Show that the line 𝐺𝑃 intersects the dummy center of perspectivity 𝑐. (Contributed by NM, 8-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem23.m | ⊢ ∧ = (meet‘𝐾) |
dalem23.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem23.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem23.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem23.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
Ref | Expression |
---|---|
dalem27 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem23.g | . . 3 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
2 | dalem.ph | . . . . . 6 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | 2 | dalemkelat 35698 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
4 | 3 | 3ad2ant1 1167 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
5 | 2 | dalemkehl 35697 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
6 | 5 | 3ad2ant1 1167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
7 | dalem.ps | . . . . . . 7 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
8 | 7 | dalemccea 35757 | . . . . . 6 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
9 | 8 | 3ad2ant3 1169 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
10 | 2 | dalempea 35700 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | 10 | 3ad2ant1 1167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ∈ 𝐴) |
12 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | dalem.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
14 | dalem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 12, 13, 14 | hlatjcl 35441 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
16 | 6, 9, 11, 15 | syl3anc 1494 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
17 | 7 | dalemddea 35758 | . . . . . 6 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
18 | 17 | 3ad2ant3 1169 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
19 | 2 | dalemsea 35703 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
20 | 19 | 3ad2ant1 1167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑆 ∈ 𝐴) |
21 | 12, 13, 14 | hlatjcl 35441 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
22 | 6, 18, 20, 21 | syl3anc 1494 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
23 | dalem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
24 | dalem23.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
25 | 12, 23, 24 | latmle1 17436 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑐 ∨ 𝑃)) |
26 | 4, 16, 22, 25 | syl3anc 1494 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑐 ∨ 𝑃)) |
27 | 1, 26 | syl5eqbr 4910 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≤ (𝑐 ∨ 𝑃)) |
28 | dalem23.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
29 | dalem23.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
30 | dalem23.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
31 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem23 35770 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
32 | 2, 23, 13, 14, 28, 29 | dalemply 35728 | . . . . 5 ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
33 | 32 | 3ad2ant1 1167 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ≤ 𝑌) |
34 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem24 35771 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐺 ≤ 𝑌) |
35 | nbrne2 4895 | . . . . 5 ⊢ ((𝑃 ≤ 𝑌 ∧ ¬ 𝐺 ≤ 𝑌) → 𝑃 ≠ 𝐺) | |
36 | 35 | necomd 3054 | . . . 4 ⊢ ((𝑃 ≤ 𝑌 ∧ ¬ 𝐺 ≤ 𝑌) → 𝐺 ≠ 𝑃) |
37 | 33, 34, 36 | syl2anc 579 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝑃) |
38 | 23, 13, 14 | hlatexch2 35470 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝐺 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝐺 ≠ 𝑃) → (𝐺 ≤ (𝑐 ∨ 𝑃) → 𝑐 ≤ (𝐺 ∨ 𝑃))) |
39 | 6, 31, 9, 11, 37, 38 | syl131anc 1506 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ≤ (𝑐 ∨ 𝑃) → 𝑐 ≤ (𝐺 ∨ 𝑃))) |
40 | 27, 39 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 lecple 16319 joincjn 17304 meetcmee 17305 Latclat 17405 Atomscatm 35337 HLchlt 35424 LPlanesclpl 35566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-lat 17406 df-clat 17468 df-oposet 35250 df-ol 35252 df-oml 35253 df-covers 35340 df-ats 35341 df-atl 35372 df-cvlat 35396 df-hlat 35425 df-llines 35572 df-lplanes 35573 |
This theorem is referenced by: dalem28 35774 dalem32 35778 dalem51 35797 dalem52 35798 |
Copyright terms: Public domain | W3C validator |