| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem27 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39715. Show that the line 𝐺𝑃 intersects the dummy center of perspectivity 𝑐. (Contributed by NM, 8-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalem.l | ⊢ ≤ = (le‘𝐾) |
| dalem.j | ⊢ ∨ = (join‘𝐾) |
| dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| dalem23.m | ⊢ ∧ = (meet‘𝐾) |
| dalem23.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem23.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem23.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem23.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
| Ref | Expression |
|---|---|
| dalem27 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem23.g | . . 3 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
| 2 | dalem.ph | . . . . . 6 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 3 | 2 | dalemkelat 39603 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 4 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
| 5 | 2 | dalemkehl 39602 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
| 7 | dalem.ps | . . . . . . 7 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 8 | 7 | dalemccea 39662 | . . . . . 6 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| 9 | 8 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
| 10 | 2 | dalempea 39605 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 11 | 10 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ∈ 𝐴) |
| 12 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | dalem.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 14 | dalem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 15 | 12, 13, 14 | hlatjcl 39346 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
| 16 | 6, 9, 11, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
| 17 | 7 | dalemddea 39663 | . . . . . 6 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
| 18 | 17 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
| 19 | 2 | dalemsea 39608 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 20 | 19 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑆 ∈ 𝐴) |
| 21 | 12, 13, 14 | hlatjcl 39346 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 22 | 6, 18, 20, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 23 | dalem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 24 | dalem23.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 25 | 12, 23, 24 | latmle1 18370 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑐 ∨ 𝑃)) |
| 26 | 4, 16, 22, 25 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑐 ∨ 𝑃)) |
| 27 | 1, 26 | eqbrtrid 5127 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≤ (𝑐 ∨ 𝑃)) |
| 28 | dalem23.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 29 | dalem23.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 30 | dalem23.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 31 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem23 39675 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
| 32 | 2, 23, 13, 14, 28, 29 | dalemply 39633 | . . . . 5 ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
| 33 | 32 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ≤ 𝑌) |
| 34 | 2, 23, 13, 14, 7, 24, 28, 29, 30, 1 | dalem24 39676 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐺 ≤ 𝑌) |
| 35 | nbrne2 5112 | . . . . 5 ⊢ ((𝑃 ≤ 𝑌 ∧ ¬ 𝐺 ≤ 𝑌) → 𝑃 ≠ 𝐺) | |
| 36 | 35 | necomd 2980 | . . . 4 ⊢ ((𝑃 ≤ 𝑌 ∧ ¬ 𝐺 ≤ 𝑌) → 𝐺 ≠ 𝑃) |
| 37 | 33, 34, 36 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝑃) |
| 38 | 23, 13, 14 | hlatexch2 39375 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝐺 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝐺 ≠ 𝑃) → (𝐺 ≤ (𝑐 ∨ 𝑃) → 𝑐 ≤ (𝐺 ∨ 𝑃))) |
| 39 | 6, 31, 9, 11, 37, 38 | syl131anc 1385 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ≤ (𝑐 ∨ 𝑃) → 𝑐 ≤ (𝐺 ∨ 𝑃))) |
| 40 | 27, 39 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Latclat 18337 Atomscatm 39242 HLchlt 39329 LPlanesclpl 39471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39477 df-lplanes 39478 |
| This theorem is referenced by: dalem28 39679 dalem32 39683 dalem51 39702 dalem52 39703 |
| Copyright terms: Public domain | W3C validator |