Proof of Theorem dalem56
Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . . 5
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | | dalem.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | dalem.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
4 | | dalem.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
5 | 1, 2, 3, 4 | dalemswapyz 37649 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (𝐶 ≤ (𝑆 ∨ 𝑃) ∧ 𝐶 ≤ (𝑇 ∨ 𝑄) ∧ 𝐶 ≤ (𝑈 ∨ 𝑅))))) |
6 | 5 | 3ad2ant1 1131 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (𝐶 ≤ (𝑆 ∨ 𝑃) ∧ 𝐶 ≤ (𝑇 ∨ 𝑄) ∧ 𝐶 ≤ (𝑈 ∨ 𝑅))))) |
7 | | simp2 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 = 𝑍) |
8 | 7 | eqcomd 2745 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑍 = 𝑌) |
9 | | dalem.ps |
. . . 4
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
10 | 1, 2, 3, 4, 9 | dalemswapyzps 37683 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) |
11 | | biid 260 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (𝐶 ≤ (𝑆 ∨ 𝑃) ∧ 𝐶 ≤ (𝑇 ∨ 𝑄) ∧ 𝐶 ≤ (𝑈 ∨ 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (𝐶 ≤ (𝑆 ∨ 𝑃) ∧ 𝐶 ≤ (𝑇 ∨ 𝑄) ∧ 𝐶 ≤ (𝑈 ∨ 𝑅))))) |
12 | | biid 260 |
. . . 4
⊢ (((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐))) ↔ ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) |
13 | | dalem54.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
14 | | dalem54.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
15 | | dalem54.z |
. . . 4
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
16 | | dalem54.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
17 | | eqid 2739 |
. . . 4
⊢ ((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) = ((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) |
18 | | eqid 2739 |
. . . 4
⊢ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄)) = ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄)) |
19 | | eqid 2739 |
. . . 4
⊢ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅)) = ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅)) |
20 | | eqid 2739 |
. . . 4
⊢
(((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍) = (((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍) |
21 | 11, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20 | dalem55 37720 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝐶 ∈
(Base‘𝐾)) ∧
(𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (𝐶 ≤ (𝑆 ∨ 𝑃) ∧ 𝐶 ≤ (𝑇 ∨ 𝑄) ∧ 𝐶 ≤ (𝑈 ∨ 𝑅)))) ∧ 𝑍 = 𝑌 ∧ ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) → ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∧ (𝑆 ∨ 𝑇)) = ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∧ (((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍))) |
22 | 6, 8, 10, 21 | syl3anc 1369 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∧ (𝑆 ∨ 𝑇)) = ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∧ (((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍))) |
23 | | dalem54.g |
. . . . 5
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
24 | 1 | dalemkelat 37617 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Lat) |
25 | 24 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
26 | 1 | dalemkehl 37616 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ HL) |
27 | 26 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
28 | 9 | dalemccea 37676 |
. . . . . . . 8
⊢ (𝜓 → 𝑐 ∈ 𝐴) |
29 | 28 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
30 | 1 | dalempea 37619 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
31 | 30 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ∈ 𝐴) |
32 | | eqid 2739 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
33 | 32, 3, 4 | hlatjcl 37360 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
34 | 27, 29, 31, 33 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
35 | 9 | dalemddea 37677 |
. . . . . . . 8
⊢ (𝜓 → 𝑑 ∈ 𝐴) |
36 | 35 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
37 | 1 | dalemsea 37622 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
38 | 37 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑆 ∈ 𝐴) |
39 | 32, 3, 4 | hlatjcl 37360 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
40 | 27, 36, 38, 39 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
41 | 32, 13 | latmcom 18162 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) = ((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃))) |
42 | 25, 34, 40, 41 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) = ((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃))) |
43 | 23, 42 | eqtrid 2791 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 = ((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃))) |
44 | | dalem54.h |
. . . . 5
⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
45 | 1 | dalemqea 37620 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
46 | 45 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑄 ∈ 𝐴) |
47 | 32, 3, 4 | hlatjcl 37360 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑐 ∨ 𝑄) ∈ (Base‘𝐾)) |
48 | 27, 29, 46, 47 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑄) ∈ (Base‘𝐾)) |
49 | 1 | dalemtea 37623 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
50 | 49 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑇 ∈ 𝐴) |
51 | 32, 3, 4 | hlatjcl 37360 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑑 ∨ 𝑇) ∈ (Base‘𝐾)) |
52 | 27, 36, 50, 51 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑇) ∈ (Base‘𝐾)) |
53 | 32, 13 | latmcom 18162 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) = ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) |
54 | 25, 48, 52, 53 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) = ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) |
55 | 44, 54 | eqtrid 2791 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 = ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) |
56 | 43, 55 | oveq12d 7286 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∨ 𝐻) = (((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄)))) |
57 | 56 | oveq1d 7283 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑆 ∨ 𝑇)) = ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∧ (𝑆 ∨ 𝑇))) |
58 | | dalem54.b1 |
. . . 4
⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) |
59 | | dalem54.i |
. . . . . . 7
⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
60 | 1 | dalemrea 37621 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
61 | 60 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑅 ∈ 𝐴) |
62 | 32, 3, 4 | hlatjcl 37360 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑐 ∨ 𝑅) ∈ (Base‘𝐾)) |
63 | 27, 29, 61, 62 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑅) ∈ (Base‘𝐾)) |
64 | 1 | dalemuea 37624 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
65 | 64 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑈 ∈ 𝐴) |
66 | 32, 3, 4 | hlatjcl 37360 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑑 ∨ 𝑈) ∈ (Base‘𝐾)) |
67 | 27, 36, 65, 66 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑈) ∈ (Base‘𝐾)) |
68 | 32, 13 | latmcom 18162 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑈) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) = ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) |
69 | 25, 63, 67, 68 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) = ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) |
70 | 59, 69 | eqtrid 2791 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 = ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) |
71 | 56, 70 | oveq12d 7286 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) = ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅)))) |
72 | 71, 7 | oveq12d 7286 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) = (((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍)) |
73 | 58, 72 | eqtrid 2791 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 = (((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍)) |
74 | 56, 73 | oveq12d 7286 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ 𝐵) = ((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∧ (((((𝑑 ∨ 𝑆) ∧ (𝑐 ∨ 𝑃)) ∨ ((𝑑 ∨ 𝑇) ∧ (𝑐 ∨ 𝑄))) ∨ ((𝑑 ∨ 𝑈) ∧ (𝑐 ∨ 𝑅))) ∧ 𝑍))) |
75 | 22, 57, 74 | 3eqtr4d 2789 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑆 ∨ 𝑇)) = ((𝐺 ∨ 𝐻) ∧ 𝐵)) |