Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem56 Structured version   Visualization version   GIF version

Theorem dalem56 39730
Description: Lemma for dath 39738. Analogue of dalem55 39729 for line 𝑆𝑇. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem56 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))

Proof of Theorem dalem56
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . 5 = (le‘𝐾)
3 dalem.j . . . . 5 = (join‘𝐾)
4 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemswapyz 39658 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
653ad2ant1 1134 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
7 simp2 1138 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 = 𝑍)
87eqcomd 2743 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑍 = 𝑌)
9 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
101, 2, 3, 4, 9dalemswapyzps 39692 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
11 biid 261 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
12 biid 261 . . . 4 (((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))) ↔ ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
13 dalem54.m . . . 4 = (meet‘𝐾)
14 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
15 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
16 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
17 eqid 2737 . . . 4 ((𝑑 𝑆) (𝑐 𝑃)) = ((𝑑 𝑆) (𝑐 𝑃))
18 eqid 2737 . . . 4 ((𝑑 𝑇) (𝑐 𝑄)) = ((𝑑 𝑇) (𝑐 𝑄))
19 eqid 2737 . . . 4 ((𝑑 𝑈) (𝑐 𝑅)) = ((𝑑 𝑈) (𝑐 𝑅))
20 eqid 2737 . . . 4 (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍) = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)
2111, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20dalem55 39729 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ∧ 𝑍 = 𝑌 ∧ ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐)))) → ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
226, 8, 10, 21syl3anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
23 dalem54.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
241dalemkelat 39626 . . . . . . 7 (𝜑𝐾 ∈ Lat)
25243ad2ant1 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
261dalemkehl 39625 . . . . . . . 8 (𝜑𝐾 ∈ HL)
27263ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
289dalemccea 39685 . . . . . . . 8 (𝜓𝑐𝐴)
29283ad2ant3 1136 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301dalempea 39628 . . . . . . . 8 (𝜑𝑃𝐴)
31303ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
32 eqid 2737 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3332, 3, 4hlatjcl 39368 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
3427, 29, 31, 33syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
359dalemddea 39686 . . . . . . . 8 (𝜓𝑑𝐴)
36353ad2ant3 1136 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
371dalemsea 39631 . . . . . . . 8 (𝜑𝑆𝐴)
38373ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
3932, 3, 4hlatjcl 39368 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
4027, 36, 38, 39syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
4132, 13latmcom 18508 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑑 𝑆) (𝑐 𝑃)))
4225, 34, 40, 41syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑑 𝑆) (𝑐 𝑃)))
4323, 42eqtrid 2789 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 = ((𝑑 𝑆) (𝑐 𝑃)))
44 dalem54.h . . . . 5 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
451dalemqea 39629 . . . . . . . 8 (𝜑𝑄𝐴)
46453ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑄𝐴)
4732, 3, 4hlatjcl 39368 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑄𝐴) → (𝑐 𝑄) ∈ (Base‘𝐾))
4827, 29, 46, 47syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑄) ∈ (Base‘𝐾))
491dalemtea 39632 . . . . . . . 8 (𝜑𝑇𝐴)
50493ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑇𝐴)
5132, 3, 4hlatjcl 39368 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑇𝐴) → (𝑑 𝑇) ∈ (Base‘𝐾))
5227, 36, 50, 51syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑇) ∈ (Base‘𝐾))
5332, 13latmcom 18508 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑐 𝑄) ∈ (Base‘𝐾) ∧ (𝑑 𝑇) ∈ (Base‘𝐾)) → ((𝑐 𝑄) (𝑑 𝑇)) = ((𝑑 𝑇) (𝑐 𝑄)))
5425, 48, 52, 53syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑄) (𝑑 𝑇)) = ((𝑑 𝑇) (𝑐 𝑄)))
5544, 54eqtrid 2789 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 = ((𝑑 𝑇) (𝑐 𝑄)))
5643, 55oveq12d 7449 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) = (((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))))
5756oveq1d 7446 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)))
58 dalem54.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
59 dalem54.i . . . . . . 7 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
601dalemrea 39630 . . . . . . . . . 10 (𝜑𝑅𝐴)
61603ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅𝐴)
6232, 3, 4hlatjcl 39368 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑅𝐴) → (𝑐 𝑅) ∈ (Base‘𝐾))
6327, 29, 61, 62syl3anc 1373 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑅) ∈ (Base‘𝐾))
641dalemuea 39633 . . . . . . . . . 10 (𝜑𝑈𝐴)
65643ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑈𝐴)
6632, 3, 4hlatjcl 39368 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑈𝐴) → (𝑑 𝑈) ∈ (Base‘𝐾))
6727, 36, 65, 66syl3anc 1373 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑈) ∈ (Base‘𝐾))
6832, 13latmcom 18508 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 𝑅) ∈ (Base‘𝐾) ∧ (𝑑 𝑈) ∈ (Base‘𝐾)) → ((𝑐 𝑅) (𝑑 𝑈)) = ((𝑑 𝑈) (𝑐 𝑅)))
6925, 63, 67, 68syl3anc 1373 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑅) (𝑑 𝑈)) = ((𝑑 𝑈) (𝑐 𝑅)))
7059, 69eqtrid 2789 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 = ((𝑑 𝑈) (𝑐 𝑅)))
7156, 70oveq12d 7449 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))))
7271, 7oveq12d 7449 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍))
7358, 72eqtrid 2789 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍))
7456, 73oveq12d 7449 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
7522, 57, 743eqtr4d 2787 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Latclat 18476  Atomscatm 39264  HLchlt 39351  LPlanesclpl 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502
This theorem is referenced by:  dalem57  39731
  Copyright terms: Public domain W3C validator