| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfabg 2901 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2721 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2882 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 {cab 2709 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-nfc 2881 |
| This theorem is referenced by: nfaba1OLD 2903 nfunOLD 4121 sbcel12 4361 sbceqg 4362 nfpw 4569 nfpr 4645 nfint 4907 intab 4928 nfiun 4973 nfiin 4974 nfiu1OLD 4978 nfii1 4979 nfopab1 5161 nfopab2 5162 nfdm 5891 eusvobj2 7338 nfoprab1 7407 nfoprab2 7408 nfoprab3 7409 nfoprab 7410 fiun 7875 f1iun 7876 nffrecs 8213 nfixpw 8840 nfixp 8841 nfixp1 8842 reclem2pr 10936 nfwrd 14447 mreiincl 17495 lss1d 20894 iinabrex 32544 disjabrex 32557 disjabrexf 32558 esumc 34059 bnj900 34936 bnj1014 34968 bnj1123 34993 bnj1307 35030 bnj1398 35041 bnj1444 35050 bnj1445 35051 bnj1446 35052 bnj1447 35053 bnj1467 35061 bnj1518 35071 bnj1519 35072 fineqvrep 35125 dfon2lem3 35818 sdclem1 37782 heibor1 37849 dihglblem5 41336 permaxrep 45038 ssfiunibd 45349 hoidmvlelem1 46632 nfsetrecs 49717 setrec2lem2 49725 setrec2 49726 |
| Copyright terms: Public domain | W3C validator |