| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2371. See nfabg 2899 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2720 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2880 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 {cab 2708 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-nfc 2879 |
| This theorem is referenced by: nfaba1OLD 2901 nfunOLD 4137 sbcel12 4377 sbceqg 4378 nfpw 4585 nfpr 4659 nfint 4923 intab 4945 nfiun 4990 nfiin 4991 nfiu1OLD 4995 nfii1 4996 nfopab1 5180 nfopab2 5181 nfdm 5918 eusvobj2 7382 nfoprab1 7453 nfoprab2 7454 nfoprab3 7455 nfoprab 7456 fiun 7924 f1iun 7925 nffrecs 8265 nfixpw 8892 nfixp 8893 nfixp1 8894 reclem2pr 11008 nfwrd 14515 mreiincl 17564 lss1d 20876 iinabrex 32505 disjabrex 32518 disjabrexf 32519 esumc 34048 bnj900 34926 bnj1014 34958 bnj1123 34983 bnj1307 35020 bnj1398 35031 bnj1444 35040 bnj1445 35041 bnj1446 35042 bnj1447 35043 bnj1467 35051 bnj1518 35061 bnj1519 35062 fineqvrep 35092 dfon2lem3 35780 sdclem1 37744 heibor1 37811 dihglblem5 41299 permaxrep 45003 ssfiunibd 45314 hoidmvlelem1 46600 nfsetrecs 49679 setrec2lem2 49687 setrec2 49688 |
| Copyright terms: Public domain | W3C validator |