![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2371. See nfabg 2910 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2722 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2886 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1785 {cab 2709 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-nfc 2885 |
This theorem is referenced by: nfaba1 2911 nfun 4165 sbcel12 4408 sbceqg 4409 nfpw 4621 nfpr 4694 nfint 4960 intab 4982 nfiun 5027 nfiin 5028 nfiu1 5031 nfii1 5032 nfopab1 5218 nfopab2 5219 nfdm 5950 eusvobj2 7400 nfoprab1 7469 nfoprab2 7470 nfoprab3 7471 nfoprab 7472 fiun 7928 f1iun 7929 nffrecs 8267 nfwrecsOLD 8301 nfixpw 8909 nfixp 8910 nfixp1 8911 reclem2pr 11042 nfwrd 14492 mreiincl 17539 lss1d 20573 iinabrex 31795 disjabrex 31808 disjabrexf 31809 esumc 33044 bnj900 33935 bnj1014 33967 bnj1123 33992 bnj1307 34029 bnj1398 34040 bnj1444 34049 bnj1445 34050 bnj1446 34051 bnj1447 34052 bnj1467 34060 bnj1518 34070 bnj1519 34071 fineqvrep 34090 dfon2lem3 34752 sdclem1 36606 heibor1 36673 dihglblem5 40164 ssfiunibd 44009 hoidmvlelem1 45301 nfsetrecs 47721 setrec2lem2 47729 setrec2 47730 |
Copyright terms: Public domain | W3C validator |