![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2374. See nfabg 2909 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2724 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2890 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1779 {cab 2711 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-10 2138 ax-11 2154 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-nfc 2889 |
This theorem is referenced by: nfaba1OLD 2911 nfunOLD 4180 sbcel12 4416 sbceqg 4417 nfpw 4623 nfpr 4696 nfint 4960 intab 4982 nfiun 5027 nfiin 5028 nfiu1OLD 5032 nfii1 5033 nfopab1 5217 nfopab2 5218 nfdm 5964 eusvobj2 7422 nfoprab1 7493 nfoprab2 7494 nfoprab3 7495 nfoprab 7496 fiun 7965 f1iun 7966 nffrecs 8306 nfwrecsOLD 8340 nfixpw 8954 nfixp 8955 nfixp1 8956 reclem2pr 11085 nfwrd 14577 mreiincl 17640 lss1d 20978 iinabrex 32588 disjabrex 32601 disjabrexf 32602 esumc 34031 bnj900 34921 bnj1014 34953 bnj1123 34978 bnj1307 35015 bnj1398 35026 bnj1444 35035 bnj1445 35036 bnj1446 35037 bnj1447 35038 bnj1467 35046 bnj1518 35056 bnj1519 35057 fineqvrep 35087 dfon2lem3 35766 sdclem1 37729 heibor1 37796 dihglblem5 41280 ssfiunibd 45259 hoidmvlelem1 46550 nfsetrecs 48916 setrec2lem2 48924 setrec2 48925 |
Copyright terms: Public domain | W3C validator |