| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2374. See nfabg 2902 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2723 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2883 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 {cab 2711 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-nfc 2882 |
| This theorem is referenced by: nfaba1OLD 2904 nfunOLD 4120 sbcel12 4360 sbceqg 4361 nfpw 4568 nfpr 4644 nfint 4907 intab 4928 nfiun 4973 nfiin 4974 nfiu1OLD 4978 nfii1 4979 nfopab1 5163 nfopab2 5164 nfdm 5895 eusvobj2 7344 nfoprab1 7413 nfoprab2 7414 nfoprab3 7415 nfoprab 7416 fiun 7881 f1iun 7882 nffrecs 8219 nfixpw 8846 nfixp 8847 nfixp1 8848 reclem2pr 10946 nfwrd 14452 mreiincl 17500 lss1d 20898 iinabrex 32551 disjabrex 32564 disjabrexf 32565 esumc 34085 bnj900 34962 bnj1014 34994 bnj1123 35019 bnj1307 35056 bnj1398 35067 bnj1444 35076 bnj1445 35077 bnj1446 35078 bnj1447 35079 bnj1467 35087 bnj1518 35097 bnj1519 35098 fineqvrep 35158 dfon2lem3 35848 sdclem1 37803 heibor1 37870 dihglblem5 41417 permaxrep 45123 ssfiunibd 45434 hoidmvlelem1 46717 nfsetrecs 49811 setrec2lem2 49819 setrec2 49820 |
| Copyright terms: Public domain | W3C validator |