![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2380. See nfabg 2915 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2730 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2896 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1781 {cab 2717 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-nfc 2895 |
This theorem is referenced by: nfaba1OLD 2917 nfunOLD 4194 sbcel12 4434 sbceqg 4435 nfpw 4641 nfpr 4715 nfint 4980 intab 5002 nfiun 5046 nfiin 5047 nfiu1OLD 5051 nfii1 5052 nfopab1 5236 nfopab2 5237 nfdm 5976 eusvobj2 7440 nfoprab1 7511 nfoprab2 7512 nfoprab3 7513 nfoprab 7514 fiun 7983 f1iun 7984 nffrecs 8324 nfwrecsOLD 8358 nfixpw 8974 nfixp 8975 nfixp1 8976 reclem2pr 11117 nfwrd 14591 mreiincl 17654 lss1d 20984 iinabrex 32591 disjabrex 32604 disjabrexf 32605 esumc 34015 bnj900 34905 bnj1014 34937 bnj1123 34962 bnj1307 34999 bnj1398 35010 bnj1444 35019 bnj1445 35020 bnj1446 35021 bnj1447 35022 bnj1467 35030 bnj1518 35040 bnj1519 35041 fineqvrep 35071 dfon2lem3 35749 sdclem1 37703 heibor1 37770 dihglblem5 41255 ssfiunibd 45224 hoidmvlelem1 46516 nfsetrecs 48778 setrec2lem2 48786 setrec2 48787 |
Copyright terms: Public domain | W3C validator |