Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfabg 2914 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2728 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2890 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 {cab 2715 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-nfc 2889 |
This theorem is referenced by: nfaba1 2915 nfun 4099 sbcel12 4342 sbceqg 4343 nfpw 4554 nfpr 4626 nfint 4889 intab 4909 nfiun 4954 nfiin 4955 nfiu1 4958 nfii1 4959 nfopab1 5144 nfopab2 5145 nfdm 5860 eusvobj2 7268 nfoprab1 7336 nfoprab2 7337 nfoprab3 7338 nfoprab 7339 fiun 7785 f1iun 7786 nffrecs 8099 nfwrecsOLD 8133 nfixpw 8704 nfixp 8705 nfixp1 8706 reclem2pr 10804 nfwrd 14246 mreiincl 17305 lss1d 20225 iinabrex 30908 disjabrex 30921 disjabrexf 30922 esumc 32019 bnj900 32909 bnj1014 32941 bnj1123 32966 bnj1307 33003 bnj1398 33014 bnj1444 33023 bnj1445 33024 bnj1446 33025 bnj1447 33026 bnj1467 33034 bnj1518 33044 bnj1519 33045 fineqvrep 33064 dfon2lem3 33761 sdclem1 35901 heibor1 35968 dihglblem5 39312 ssfiunibd 42848 hoidmvlelem1 44133 nfsetrecs 46392 setrec2lem2 46400 setrec2 46401 |
Copyright terms: Public domain | W3C validator |