| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2370. See nfabg 2898 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2719 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2879 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 {cab 2707 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-nfc 2878 |
| This theorem is referenced by: nfaba1OLD 2900 nfunOLD 4124 sbcel12 4364 sbceqg 4365 nfpw 4572 nfpr 4646 nfint 4909 intab 4931 nfiun 4976 nfiin 4977 nfiu1OLD 4981 nfii1 4982 nfopab1 5165 nfopab2 5166 nfdm 5897 eusvobj2 7345 nfoprab1 7414 nfoprab2 7415 nfoprab3 7416 nfoprab 7417 fiun 7885 f1iun 7886 nffrecs 8223 nfixpw 8850 nfixp 8851 nfixp1 8852 reclem2pr 10961 nfwrd 14468 mreiincl 17516 lss1d 20884 iinabrex 32531 disjabrex 32544 disjabrexf 32545 esumc 34017 bnj900 34895 bnj1014 34927 bnj1123 34952 bnj1307 34989 bnj1398 35000 bnj1444 35009 bnj1445 35010 bnj1446 35011 bnj1447 35012 bnj1467 35020 bnj1518 35030 bnj1519 35031 fineqvrep 35069 dfon2lem3 35758 sdclem1 37722 heibor1 37789 dihglblem5 41277 permaxrep 44980 ssfiunibd 45291 hoidmvlelem1 46577 nfsetrecs 49672 setrec2lem2 49680 setrec2 49681 |
| Copyright terms: Public domain | W3C validator |