Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfabg 2913 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2728 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2889 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1787 {cab 2715 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-nfc 2888 |
This theorem is referenced by: nfaba1 2914 nfun 4095 sbcel12 4339 sbceqg 4340 nfpw 4551 nfpr 4623 nfint 4886 intab 4906 nfiun 4951 nfiin 4952 nfiu1 4955 nfii1 4956 nfopab1 5140 nfopab2 5141 nfdm 5849 eusvobj2 7248 nfoprab1 7314 nfoprab2 7315 nfoprab3 7316 nfoprab 7317 fiun 7759 f1iun 7760 nffrecs 8070 nfwrecsOLD 8104 nfixpw 8662 nfixp 8663 nfixp1 8664 reclem2pr 10735 nfwrd 14174 mreiincl 17222 lss1d 20140 iinabrex 30809 disjabrex 30822 disjabrexf 30823 esumc 31919 bnj900 32809 bnj1014 32841 bnj1123 32866 bnj1307 32903 bnj1398 32914 bnj1444 32923 bnj1445 32924 bnj1446 32925 bnj1447 32926 bnj1467 32934 bnj1518 32944 bnj1519 32945 fineqvrep 32964 dfon2lem3 33667 sdclem1 35828 heibor1 35895 dihglblem5 39239 ssfiunibd 42738 hoidmvlelem1 44023 nfsetrecs 46278 setrec2lem2 46286 setrec2 46287 |
Copyright terms: Public domain | W3C validator |