![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2371. See nfabg 2910 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2722 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2886 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1785 {cab 2709 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-nfc 2885 |
This theorem is referenced by: nfaba1 2911 nfun 4165 sbcel12 4408 sbceqg 4409 nfpw 4621 nfpr 4694 nfint 4960 intab 4982 nfiun 5027 nfiin 5028 nfiu1 5031 nfii1 5032 nfopab1 5218 nfopab2 5219 nfdm 5950 eusvobj2 7403 nfoprab1 7472 nfoprab2 7473 nfoprab3 7474 nfoprab 7475 fiun 7931 f1iun 7932 nffrecs 8270 nfwrecsOLD 8304 nfixpw 8912 nfixp 8913 nfixp1 8914 reclem2pr 11045 nfwrd 14495 mreiincl 17542 lss1d 20579 iinabrex 31838 disjabrex 31851 disjabrexf 31852 esumc 33118 bnj900 34009 bnj1014 34041 bnj1123 34066 bnj1307 34103 bnj1398 34114 bnj1444 34123 bnj1445 34124 bnj1446 34125 bnj1447 34126 bnj1467 34134 bnj1518 34144 bnj1519 34145 fineqvrep 34164 dfon2lem3 34832 sdclem1 36703 heibor1 36770 dihglblem5 40261 ssfiunibd 44104 hoidmvlelem1 45396 nfsetrecs 47815 setrec2lem2 47823 setrec2 47824 |
Copyright terms: Public domain | W3C validator |