| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2370. See nfabg 2898 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2719 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2879 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 {cab 2707 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-nfc 2878 |
| This theorem is referenced by: nfaba1OLD 2900 nfunOLD 4134 sbcel12 4374 sbceqg 4375 nfpw 4582 nfpr 4656 nfint 4920 intab 4942 nfiun 4987 nfiin 4988 nfiu1OLD 4992 nfii1 4993 nfopab1 5177 nfopab2 5178 nfdm 5915 eusvobj2 7379 nfoprab1 7450 nfoprab2 7451 nfoprab3 7452 nfoprab 7453 fiun 7921 f1iun 7922 nffrecs 8262 nfixpw 8889 nfixp 8890 nfixp1 8891 reclem2pr 11001 nfwrd 14508 mreiincl 17557 lss1d 20869 iinabrex 32498 disjabrex 32511 disjabrexf 32512 esumc 34041 bnj900 34919 bnj1014 34951 bnj1123 34976 bnj1307 35013 bnj1398 35024 bnj1444 35033 bnj1445 35034 bnj1446 35035 bnj1447 35036 bnj1467 35044 bnj1518 35054 bnj1519 35055 fineqvrep 35085 dfon2lem3 35773 sdclem1 37737 heibor1 37804 dihglblem5 41292 permaxrep 44996 ssfiunibd 45307 hoidmvlelem1 46593 nfsetrecs 49675 setrec2lem2 49683 setrec2 49684 |
| Copyright terms: Public domain | W3C validator |