| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2376. See nfabg 2905 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2725 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2886 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 {cab 2713 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-nfc 2885 |
| This theorem is referenced by: nfaba1OLD 2907 nfunOLD 4146 sbcel12 4386 sbceqg 4387 nfpw 4594 nfpr 4668 nfint 4932 intab 4954 nfiun 4999 nfiin 5000 nfiu1OLD 5004 nfii1 5005 nfopab1 5189 nfopab2 5190 nfdm 5931 eusvobj2 7397 nfoprab1 7468 nfoprab2 7469 nfoprab3 7470 nfoprab 7471 fiun 7941 f1iun 7942 nffrecs 8282 nfwrecsOLD 8316 nfixpw 8930 nfixp 8931 nfixp1 8932 reclem2pr 11062 nfwrd 14561 mreiincl 17608 lss1d 20920 iinabrex 32550 disjabrex 32563 disjabrexf 32564 esumc 34082 bnj900 34960 bnj1014 34992 bnj1123 35017 bnj1307 35054 bnj1398 35065 bnj1444 35074 bnj1445 35075 bnj1446 35076 bnj1447 35077 bnj1467 35085 bnj1518 35095 bnj1519 35096 fineqvrep 35126 dfon2lem3 35803 sdclem1 37767 heibor1 37834 dihglblem5 41317 permaxrep 45031 ssfiunibd 45338 hoidmvlelem1 46624 nfsetrecs 49550 setrec2lem2 49558 setrec2 49559 |
| Copyright terms: Public domain | W3C validator |