Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2370. See nfabg 2911 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2726 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2887 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1784 {cab 2713 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-nfc 2886 |
This theorem is referenced by: nfaba1 2912 nfun 4112 sbcel12 4355 sbceqg 4356 nfpw 4566 nfpr 4638 nfint 4904 intab 4926 nfiun 4971 nfiin 4972 nfiu1 4975 nfii1 4976 nfopab1 5162 nfopab2 5163 nfdm 5892 eusvobj2 7329 nfoprab1 7398 nfoprab2 7399 nfoprab3 7400 nfoprab 7401 fiun 7853 f1iun 7854 nffrecs 8169 nfwrecsOLD 8203 nfixpw 8775 nfixp 8776 nfixp1 8777 reclem2pr 10905 nfwrd 14346 mreiincl 17402 lss1d 20331 iinabrex 31195 disjabrex 31208 disjabrexf 31209 esumc 32317 bnj900 33208 bnj1014 33240 bnj1123 33265 bnj1307 33302 bnj1398 33313 bnj1444 33322 bnj1445 33323 bnj1446 33324 bnj1447 33325 bnj1467 33333 bnj1518 33343 bnj1519 33344 fineqvrep 33363 dfon2lem3 34044 sdclem1 36006 heibor1 36073 dihglblem5 39566 ssfiunibd 43183 hoidmvlelem1 44470 nfsetrecs 46743 setrec2lem2 46751 setrec2 46752 |
Copyright terms: Public domain | W3C validator |