Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abidnf | Structured version Visualization version GIF version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf | ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2180 | . . 3 ⊢ (∀𝑥 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐴) | |
2 | nfcr 2904 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑧 ∈ 𝐴) | |
3 | 2 | nf5rd 2194 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
4 | 1, 3 | impbid2 229 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∀𝑥 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
5 | 4 | abbi1dv 2890 | 1 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 = wceq 1538 ∈ wcel 2111 {cab 2735 Ⅎwnfc 2899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 |
This theorem is referenced by: dedhb 3620 nfopd 4783 nfimad 5914 nffvd 6674 nfunidALT2 36571 nfunidALT 36572 nfopdALT 36573 |
Copyright terms: Public domain | W3C validator |