Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abidnf | Structured version Visualization version GIF version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf | ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2178 | . . 3 ⊢ (∀𝑥 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐴) | |
2 | nfcr 2891 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑧 ∈ 𝐴) | |
3 | 2 | nf5rd 2192 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
4 | 1, 3 | impbid2 225 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∀𝑥 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
5 | 4 | abbi1dv 2877 | 1 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: dedhb 3634 nfopd 4818 nfimad 5967 nffvd 6768 nfunidALT2 36910 nfunidALT 36911 nfopdALT 36912 |
Copyright terms: Public domain | W3C validator |