![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abidnf | Structured version Visualization version GIF version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf | ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2217 | . . 3 ⊢ (∀𝑥 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐴) | |
2 | nfcr 2933 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑧 ∈ 𝐴) | |
3 | 2 | nf5rd 2230 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
4 | 1, 3 | impbid2 218 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∀𝑥 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
5 | 4 | abbi1dv 2920 | 1 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1651 = wceq 1653 ∈ wcel 2157 {cab 2785 Ⅎwnfc 2928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 |
This theorem is referenced by: dedhb 3570 nfopd 4610 nfimad 5692 nffvd 6423 nfunidALT2 34990 nfunidALT 34991 nfopdALT 34992 |
Copyright terms: Public domain | W3C validator |