MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abidnf Structured version   Visualization version   GIF version

Theorem abidnf 3699
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 2177 . . 3 (∀𝑥 𝑧𝐴𝑧𝐴)
2 nfcr 2889 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
32nf5rd 2190 . . 3 (𝑥𝐴 → (𝑧𝐴 → ∀𝑥 𝑧𝐴))
41, 3impbid2 225 . 2 (𝑥𝐴 → (∀𝑥 𝑧𝐴𝑧𝐴))
54eqabcdv 2869 1 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886
This theorem is referenced by:  dedhb  3700  nfopd  4891  nfimad  6069  nffvd  6904  nfunidALT2  37839  nfunidALT  37840  nfopdALT  37841
  Copyright terms: Public domain W3C validator