MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abidnf Structured version   Visualization version   GIF version

Theorem abidnf 3676
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 2184 . . 3 (∀𝑥 𝑧𝐴𝑧𝐴)
2 nfcr 2882 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
32nf5rd 2197 . . 3 (𝑥𝐴 → (𝑧𝐴 → ∀𝑥 𝑧𝐴))
41, 3impbid2 226 . 2 (𝑥𝐴 → (∀𝑥 𝑧𝐴𝑧𝐴))
54eqabcdv 2863 1 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879
This theorem is referenced by:  dedhb  3677  nfopd  4857  nfimad  6043  nffvd  6873  nfunidALT2  38969  nfunidALT  38970  nfopdALT  38971
  Copyright terms: Public domain W3C validator