MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abidnf Structured version   Visualization version   GIF version

Theorem abidnf 3619
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 2180 . . 3 (∀𝑥 𝑧𝐴𝑧𝐴)
2 nfcr 2904 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
32nf5rd 2194 . . 3 (𝑥𝐴 → (𝑧𝐴 → ∀𝑥 𝑧𝐴))
41, 3impbid2 229 . 2 (𝑥𝐴 → (∀𝑥 𝑧𝐴𝑧𝐴))
54abbi1dv 2890 1 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536   = wceq 1538  wcel 2111  {cab 2735  wnfc 2899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901
This theorem is referenced by:  dedhb  3620  nfopd  4783  nfimad  5914  nffvd  6674  nfunidALT2  36571  nfunidALT  36572  nfopdALT  36573
  Copyright terms: Public domain W3C validator