MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abidnf Structured version   Visualization version   GIF version

Theorem abidnf 3691
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 2168 . . 3 (∀𝑥 𝑧𝐴𝑧𝐴)
2 nfcr 2880 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
32nf5rd 2181 . . 3 (𝑥𝐴 → (𝑧𝐴 → ∀𝑥 𝑧𝐴))
41, 3impbid2 225 . 2 (𝑥𝐴 → (∀𝑥 𝑧𝐴𝑧𝐴))
54eqabcdv 2860 1 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531   = wceq 1533  wcel 2098  {cab 2701  wnfc 2875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877
This theorem is referenced by:  dedhb  3692  nfopd  4883  nfimad  6059  nffvd  6894  nfunidALT2  38333  nfunidALT  38334  nfopdALT  38335
  Copyright terms: Public domain W3C validator