MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfunALT Structured version   Visualization version   GIF version

Theorem cnfldfunALT 20812
Description: The field of complex numbers is a function. Alternate proof of cnfldfun 20811 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnfldfunALT Fun ℂfld

Proof of Theorem cnfldfunALT
StepHypRef Expression
1 basendxnplusgndx 17164 . . . . . . 7 (Base‘ndx) ≠ (+g‘ndx)
2 basendxnmulrndx 17177 . . . . . . 7 (Base‘ndx) ≠ (.r‘ndx)
3 plusgndxnmulrndx 17179 . . . . . . 7 (+g‘ndx) ≠ (.r‘ndx)
4 fvex 6856 . . . . . . . 8 (Base‘ndx) ∈ V
5 fvex 6856 . . . . . . . 8 (+g‘ndx) ∈ V
6 fvex 6856 . . . . . . . 8 (.r‘ndx) ∈ V
7 cnex 11133 . . . . . . . 8 ℂ ∈ V
8 addex 12914 . . . . . . . 8 + ∈ V
9 mulex 12915 . . . . . . . 8 · ∈ V
104, 5, 6, 7, 8, 9funtp 6559 . . . . . . 7 (((Base‘ndx) ≠ (+g‘ndx) ∧ (Base‘ndx) ≠ (.r‘ndx) ∧ (+g‘ndx) ≠ (.r‘ndx)) → Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
111, 2, 3, 10mp3an 1462 . . . . . 6 Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
12 fvex 6856 . . . . . . 7 (*𝑟‘ndx) ∈ V
13 cjf 14990 . . . . . . . 8 ∗:ℂ⟶ℂ
14 fex 7177 . . . . . . . 8 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
1513, 7, 14mp2an 691 . . . . . . 7 ∗ ∈ V
1612, 15funsn 6555 . . . . . 6 Fun {⟨(*𝑟‘ndx), ∗⟩}
1711, 16pm3.2i 472 . . . . 5 (Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩})
187, 8, 9dmtpop 6171 . . . . . . 7 dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} = {(Base‘ndx), (+g‘ndx), (.r‘ndx)}
1915dmsnop 6169 . . . . . . 7 dom {⟨(*𝑟‘ndx), ∗⟩} = {(*𝑟‘ndx)}
2018, 19ineq12i 4171 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)})
21 starvndxnbasendx 17186 . . . . . . . 8 (*𝑟‘ndx) ≠ (Base‘ndx)
2221necomi 2999 . . . . . . 7 (Base‘ndx) ≠ (*𝑟‘ndx)
23 starvndxnplusgndx 17187 . . . . . . . 8 (*𝑟‘ndx) ≠ (+g‘ndx)
2423necomi 2999 . . . . . . 7 (+g‘ndx) ≠ (*𝑟‘ndx)
25 starvndxnmulrndx 17188 . . . . . . . 8 (*𝑟‘ndx) ≠ (.r‘ndx)
2625necomi 2999 . . . . . . 7 (.r‘ndx) ≠ (*𝑟‘ndx)
27 disjtpsn 4677 . . . . . . 7 (((Base‘ndx) ≠ (*𝑟‘ndx) ∧ (+g‘ndx) ≠ (*𝑟‘ndx) ∧ (.r‘ndx) ≠ (*𝑟‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
2822, 24, 26, 27mp3an 1462 . . . . . 6 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
2920, 28eqtri 2765 . . . . 5 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅
30 funun 6548 . . . . 5 (((Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩}) ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅) → Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}))
3117, 29, 30mp2an 691 . . . 4 Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32 slotsdifplendx 17257 . . . . . . . 8 ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
3332simpri 487 . . . . . . 7 (TopSet‘ndx) ≠ (le‘ndx)
34 dsndxntsetndx 17275 . . . . . . . 8 (dist‘ndx) ≠ (TopSet‘ndx)
3534necomi 2999 . . . . . . 7 (TopSet‘ndx) ≠ (dist‘ndx)
36 slotsdifdsndx 17276 . . . . . . . 8 ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
3736simpri 487 . . . . . . 7 (le‘ndx) ≠ (dist‘ndx)
38 fvex 6856 . . . . . . . 8 (TopSet‘ndx) ∈ V
39 fvex 6856 . . . . . . . 8 (le‘ndx) ∈ V
40 fvex 6856 . . . . . . . 8 (dist‘ndx) ∈ V
41 fvex 6856 . . . . . . . 8 (MetOpen‘(abs ∘ − )) ∈ V
42 letsr 18483 . . . . . . . . 9 ≤ ∈ TosetRel
4342elexi 3465 . . . . . . . 8 ≤ ∈ V
44 absf 15223 . . . . . . . . . 10 abs:ℂ⟶ℝ
45 fex 7177 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4644, 7, 45mp2an 691 . . . . . . . . 9 abs ∈ V
47 subf 11404 . . . . . . . . . 10 − :(ℂ × ℂ)⟶ℂ
487, 7xpex 7688 . . . . . . . . . 10 (ℂ × ℂ) ∈ V
49 fex 7177 . . . . . . . . . 10 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
5047, 48, 49mp2an 691 . . . . . . . . 9 − ∈ V
5146, 50coex 7868 . . . . . . . 8 (abs ∘ − ) ∈ V
5238, 39, 40, 41, 43, 51funtp 6559 . . . . . . 7 (((TopSet‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩})
5333, 35, 37, 52mp3an 1462 . . . . . 6 Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
54 fvex 6856 . . . . . . 7 (UnifSet‘ndx) ∈ V
55 fvex 6856 . . . . . . 7 (metUnif‘(abs ∘ − )) ∈ V
5654, 55funsn 6555 . . . . . 6 Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5753, 56pm3.2i 472 . . . . 5 (Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5841, 43, 51dmtpop 6171 . . . . . . 7 dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} = {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}
5955dmsnop 6169 . . . . . . 7 dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} = {(UnifSet‘ndx)}
6058, 59ineq12i 4171 . . . . . 6 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)})
61 slotsdifunifndx 17283 . . . . . . . 8 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
62 unifndxntsetndx 17282 . . . . . . . . . . . 12 (UnifSet‘ndx) ≠ (TopSet‘ndx)
6362necomi 2999 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (UnifSet‘ndx)
6463a1i 11 . . . . . . . . . 10 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (TopSet‘ndx) ≠ (UnifSet‘ndx))
6564anim1i 616 . . . . . . . . 9 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
66 3anass 1096 . . . . . . . . 9 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) ↔ ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
6765, 66sylibr 233 . . . . . . . 8 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
6861, 67ax-mp 5 . . . . . . 7 ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))
69 disjtpsn 4677 . . . . . . 7 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
7068, 69ax-mp 5 . . . . . 6 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
7160, 70eqtri 2765 . . . . 5 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
72 funun 6548 . . . . 5 (((Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∧ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) → Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7357, 71, 72mp2an 691 . . . 4 Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7431, 73pm3.2i 472 . . 3 (Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
75 dmun 5867 . . . . 5 dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩})
76 dmun 5867 . . . . 5 dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7775, 76ineq12i 4171 . . . 4 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7818, 58ineq12i 4171 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
79 tsetndxnbasendx 17238 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (Base‘ndx)
8079necomi 2999 . . . . . . . . . . 11 (Base‘ndx) ≠ (TopSet‘ndx)
81 tsetndxnplusgndx 17239 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (+g‘ndx)
8281necomi 2999 . . . . . . . . . . 11 (+g‘ndx) ≠ (TopSet‘ndx)
83 tsetndxnmulrndx 17240 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (.r‘ndx)
8483necomi 2999 . . . . . . . . . . 11 (.r‘ndx) ≠ (TopSet‘ndx)
8580, 82, 843pm3.2i 1340 . . . . . . . . . 10 ((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx))
86 plendxnbasendx 17252 . . . . . . . . . . . 12 (le‘ndx) ≠ (Base‘ndx)
8786necomi 2999 . . . . . . . . . . 11 (Base‘ndx) ≠ (le‘ndx)
88 plendxnplusgndx 17253 . . . . . . . . . . . 12 (le‘ndx) ≠ (+g‘ndx)
8988necomi 2999 . . . . . . . . . . 11 (+g‘ndx) ≠ (le‘ndx)
90 plendxnmulrndx 17254 . . . . . . . . . . . 12 (le‘ndx) ≠ (.r‘ndx)
9190necomi 2999 . . . . . . . . . . 11 (.r‘ndx) ≠ (le‘ndx)
9287, 89, 913pm3.2i 1340 . . . . . . . . . 10 ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx))
93 dsndxnbasendx 17271 . . . . . . . . . . . 12 (dist‘ndx) ≠ (Base‘ndx)
9493necomi 2999 . . . . . . . . . . 11 (Base‘ndx) ≠ (dist‘ndx)
95 dsndxnplusgndx 17272 . . . . . . . . . . . 12 (dist‘ndx) ≠ (+g‘ndx)
9695necomi 2999 . . . . . . . . . . 11 (+g‘ndx) ≠ (dist‘ndx)
97 dsndxnmulrndx 17273 . . . . . . . . . . . 12 (dist‘ndx) ≠ (.r‘ndx)
9897necomi 2999 . . . . . . . . . . 11 (.r‘ndx) ≠ (dist‘ndx)
9994, 96, 983pm3.2i 1340 . . . . . . . . . 10 ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))
100 disjtp2 4678 . . . . . . . . . 10 ((((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx)) ∧ ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx)) ∧ ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅)
10185, 92, 99, 100mp3an 1462 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
10278, 101eqtri 2765 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
10318, 59ineq12i 4171 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)})
104 unifndxnbasendx 17281 . . . . . . . . . . . . . . 15 (UnifSet‘ndx) ≠ (Base‘ndx)
105104necomi 2999 . . . . . . . . . . . . . 14 (Base‘ndx) ≠ (UnifSet‘ndx)
106105a1i 11 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (Base‘ndx) ≠ (UnifSet‘ndx))
107 3simpa 1149 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
108 3anass 1096 . . . . . . . . . . . . 13 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) ↔ ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))))
109106, 107, 108sylanbrc 584 . . . . . . . . . . . 12 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
110109adantr 482 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
11161, 110ax-mp 5 . . . . . . . . . 10 ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))
112 disjtpsn 4677 . . . . . . . . . 10 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
113111, 112ax-mp 5 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
114103, 113eqtri 2765 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
115102, 114pm3.2i 472 . . . . . . 7 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
116 undisj2 4423 . . . . . . 7 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
117115, 116mpbi 229 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
11819, 58ineq12i 4171 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
119 tsetndxnstarvndx 17241 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (*𝑟‘ndx)
120 necom 2998 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (le‘ndx) ↔ (le‘ndx) ≠ (*𝑟‘ndx))
121120biimpi 215 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (le‘ndx) → (le‘ndx) ≠ (*𝑟‘ndx))
122121adantr 482 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) → (le‘ndx) ≠ (*𝑟‘ndx))
12332, 122ax-mp 5 . . . . . . . . . . 11 (le‘ndx) ≠ (*𝑟‘ndx)
124 necom 2998 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (dist‘ndx) ↔ (dist‘ndx) ≠ (*𝑟‘ndx))
125124biimpi 215 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (dist‘ndx) → (dist‘ndx) ≠ (*𝑟‘ndx))
126125adantr 482 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → (dist‘ndx) ≠ (*𝑟‘ndx))
12736, 126ax-mp 5 . . . . . . . . . . 11 (dist‘ndx) ≠ (*𝑟‘ndx)
128 disjtpsn 4677 . . . . . . . . . . 11 (((TopSet‘ndx) ≠ (*𝑟‘ndx) ∧ (le‘ndx) ≠ (*𝑟‘ndx) ∧ (dist‘ndx) ≠ (*𝑟‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
129119, 123, 127, 128mp3an 1462 . . . . . . . . . 10 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
130129ineqcomi 4164 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
131118, 130eqtri 2765 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
13219, 59ineq12i 4171 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)})
133 simpl3 1194 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → (*𝑟‘ndx) ≠ (UnifSet‘ndx))
13461, 133ax-mp 5 . . . . . . . . . 10 (*𝑟‘ndx) ≠ (UnifSet‘ndx)
135 disjsn2 4674 . . . . . . . . . 10 ((*𝑟‘ndx) ≠ (UnifSet‘ndx) → ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
136134, 135ax-mp 5 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
137132, 136eqtri 2765 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
138131, 137pm3.2i 472 . . . . . . 7 ((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
139 undisj2 4423 . . . . . . 7 (((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
140138, 139mpbi 229 . . . . . 6 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
141117, 140pm3.2i 472 . . . . 5 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
142 undisj1 4422 . . . . 5 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) ↔ ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
143141, 142mpbi 229 . . . 4 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
14477, 143eqtri 2765 . . 3 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
145 funun 6548 . . 3 (((Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∧ (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) → Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
14674, 144, 145mp2an 691 . 2 Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
147 df-cnfld 20800 . . 3 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
148147funeqi 6523 . 2 (Fun ℂfld ↔ Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
149146, 148mpbir 230 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944  Vcvv 3446  cun 3909  cin 3910  c0 4283  {csn 4587  {ctp 4591  cop 4593   × cxp 5632  dom cdm 5634  ccom 5638  Fun wfun 6491  wf 6493  cfv 6497  cc 11050  cr 11051   + caddc 11055   · cmul 11057  cle 11191  cmin 11386  ccj 14982  abscabs 15120  ndxcnx 17066  Basecbs 17084  +gcplusg 17134  .rcmulr 17135  *𝑟cstv 17136  TopSetcts 17140  lecple 17141  distcds 17143  UnifSetcunif 17144   TosetRel ctsr 18455  MetOpencmopn 20789  metUnifcmetu 20790  fldccnfld 20799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130  ax-addf 11131  ax-mulf 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-sup 9379  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-3 12218  df-4 12219  df-5 12220  df-6 12221  df-7 12222  df-8 12223  df-9 12224  df-n0 12415  df-z 12501  df-dec 12620  df-uz 12765  df-rp 12917  df-seq 13908  df-exp 13969  df-cj 14985  df-re 14986  df-im 14987  df-sqrt 15121  df-abs 15122  df-slot 17055  df-ndx 17067  df-base 17085  df-plusg 17147  df-mulr 17148  df-starv 17149  df-tset 17153  df-ple 17154  df-ds 17156  df-unif 17157  df-ps 18456  df-tsr 18457  df-cnfld 20800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator