| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldmul | Structured version Visualization version GIF version | ||
| Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21287. (Revised by GG, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| cnfldmul | ⊢ · = (.r‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 11081 | . . . 4 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | ffn 6646 | . . . 4 ⊢ ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ · Fn (ℂ × ℂ) |
| 4 | fnov 7472 | . . 3 ⊢ ( · Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
| 6 | mpocnfldmul 21293 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld) | |
| 7 | 5, 6 | eqtri 2754 | 1 ⊢ · = (.r‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5609 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ℂcc 10999 · cmul 11006 .rcmulr 17157 ℂfldccnfld 21286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-cnfld 21287 |
| This theorem is referenced by: cncrngOLD 21321 cnfld1OLD 21326 cndrngOLD 21331 cnflddivOLD 21333 cnfldexp 21336 cnsrng 21337 cnsubrglemOLD 21349 absabv 21356 cnsubrg 21359 cnmsubglem 21362 expmhm 21368 nn0srg 21369 rge0srg 21370 zringmulr 21389 expghm 21407 psgnghm 21512 psgnco 21515 evpmodpmf1o 21528 remulr 21543 mdetralt 22518 clmmul 24997 clmmcl 25007 isclmp 25019 cnlmod 25062 cnncvsmulassdemo 25086 cphsubrglem 25099 cphdivcl 25104 cphabscl 25107 cphsqrtcl2 25108 cphsqrtcl3 25109 ipcau2 25156 plypf1 26139 dvply2gOLD 26215 taylply2OLD 26298 reefgim 26382 efabl 26481 efsubm 26482 amgmlem 26922 amgm 26923 wilthlem2 27001 wilthlem3 27002 dchrelbas3 27171 dchrzrhmul 27179 dchrmulcl 27182 dchrn0 27183 dchrinvcl 27186 dchrsum2 27201 sum2dchr 27207 qabvexp 27559 ostthlem2 27561 padicabv 27563 ostth2lem2 27567 ostth3 27571 xrge0slmod 33305 zringfrac 33511 ccfldsrarelvec 33676 ccfldextdgrr 33677 constrelextdg2 33752 constrsdrg 33780 2sqr3minply 33785 cos9thpiminplylem6 33792 iistmd 33907 xrge0iifmhm 33944 xrge0pluscn 33945 qqhrhm 33994 cnsrexpcl 43198 cnsrplycl 43200 rngunsnply 43202 amgm2d 44231 amgm3d 44232 amgm4d 44233 cnfldsrngmul 48194 aacllem 49833 amgmlemALT 49835 amgmw2d 49836 |
| Copyright terms: Public domain | W3C validator |