![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldmul | Structured version Visualization version GIF version |
Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldmul | ⊢ · = (.r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulex 12972 | . 2 ⊢ · ∈ V | |
2 | cnfldstr 20945 | . . 3 ⊢ ℂfld Struct ⟨1, ;13⟩ | |
3 | mulridx 17238 | . . 3 ⊢ .r = Slot (.r‘ndx) | |
4 | snsstp3 4821 | . . . 4 ⊢ {⟨(.r‘ndx), · ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} | |
5 | ssun1 4172 | . . . . 5 ⊢ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) | |
6 | ssun1 4172 | . . . . . 6 ⊢ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
7 | df-cnfld 20944 | . . . . . 6 ⊢ ℂfld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
8 | 6, 7 | sseqtrri 4019 | . . . . 5 ⊢ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld |
9 | 5, 8 | sstri 3991 | . . . 4 ⊢ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld |
10 | 4, 9 | sstri 3991 | . . 3 ⊢ {⟨(.r‘ndx), · ⟩} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 17136 | . 2 ⊢ ( · ∈ V → · = (.r‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ · = (.r‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 {csn 4628 {ctp 4632 ⟨cop 4634 ∘ ccom 5680 ‘cfv 6543 ℂcc 11107 1c1 11110 + caddc 11112 · cmul 11114 ≤ cle 11248 − cmin 11443 3c3 12267 ;cdc 12676 ∗ccj 15042 abscabs 15180 ndxcnx 17125 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 *𝑟cstv 17198 TopSetcts 17202 lecple 17203 distcds 17205 UnifSetcunif 17206 MetOpencmopn 20933 metUnifcmetu 20934 ℂfldccnfld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-cnfld 20944 |
This theorem is referenced by: cncrng 20965 cnfld1 20969 cndrng 20973 cnflddiv 20974 cnfldexp 20977 cnsrng 20978 cnsubrglem 20994 absabv 21001 cnsubrg 21004 cnmsubglem 21007 expmhm 21013 nn0srg 21014 rge0srg 21015 zringmulr 21026 expghm 21044 psgnghm 21132 psgnco 21135 evpmodpmf1o 21148 remulr 21163 mdetralt 22109 clmmul 24590 clmmcl 24600 isclmp 24612 cnlmod 24655 cnncvsmulassdemo 24680 cphsubrglem 24693 cphdivcl 24698 cphabscl 24701 cphsqrtcl2 24702 cphsqrtcl3 24703 ipcau2 24750 plypf1 25725 dvply2g 25797 taylply2 25879 reefgim 25961 efabl 26058 efsubm 26059 amgmlem 26491 amgm 26492 wilthlem2 26570 wilthlem3 26571 dchrelbas3 26738 dchrzrhmul 26746 dchrmulcl 26749 dchrn0 26750 dchrinvcl 26753 dchrsum2 26768 sum2dchr 26774 qabvexp 27126 ostthlem2 27128 padicabv 27130 ostth2lem2 27134 ostth3 27138 xrge0slmod 32458 ccfldsrarelvec 32740 ccfldextdgrr 32741 iistmd 32877 xrge0iifmhm 32914 xrge0pluscn 32915 qqhrhm 32964 cnsrexpcl 41897 cnsrplycl 41899 rngunsnply 41905 amgm2d 42940 amgm3d 42941 amgm4d 42942 cnfldsrngmul 46531 aacllem 47838 amgmlemALT 47840 amgmw2d 47841 |
Copyright terms: Public domain | W3C validator |