MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmul Structured version   Visualization version   GIF version

Theorem cnfldmul 20950
Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldmul · = (.r‘ℂfld)

Proof of Theorem cnfldmul
StepHypRef Expression
1 mulex 12973 . 2 · ∈ V
2 cnfldstr 20946 . . 3 fld Struct ⟨1, 13⟩
3 mulridx 17239 . . 3 .r = Slot (.r‘ndx)
4 snsstp3 4822 . . . 4 {⟨(.r‘ndx), · ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
5 ssun1 4173 . . . . 5 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
6 ssun1 4173 . . . . . 6 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 df-cnfld 20945 . . . . . 6 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
86, 7sseqtrri 4020 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld
95, 8sstri 3992 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld
104, 9sstri 3992 . . 3 {⟨(.r‘ndx), · ⟩} ⊆ ℂfld
112, 3, 10strfv 17137 . 2 ( · ∈ V → · = (.r‘ℂfld))
121, 11ax-mp 5 1 · = (.r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3475  cun 3947  {csn 4629  {ctp 4633  cop 4635  ccom 5681  cfv 6544  cc 11108  1c1 11111   + caddc 11113   · cmul 11115  cle 11249  cmin 11444  3c3 12268  cdc 12677  ccj 15043  abscabs 15181  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  .rcmulr 17198  *𝑟cstv 17199  TopSetcts 17203  lecple 17204  distcds 17206  UnifSetcunif 17207  MetOpencmopn 20934  metUnifcmetu 20935  fldccnfld 20944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-mulr 17211  df-starv 17212  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-cnfld 20945
This theorem is referenced by:  cncrng  20966  cnfld1  20970  cndrng  20974  cnflddiv  20975  cnfldexp  20978  cnsrng  20979  cnsubrglem  20995  absabv  21002  cnsubrg  21005  cnmsubglem  21008  expmhm  21014  nn0srg  21015  rge0srg  21016  zringmulr  21027  expghm  21045  psgnghm  21133  psgnco  21136  evpmodpmf1o  21149  remulr  21164  mdetralt  22110  clmmul  24591  clmmcl  24601  isclmp  24613  cnlmod  24656  cnncvsmulassdemo  24681  cphsubrglem  24694  cphdivcl  24699  cphabscl  24702  cphsqrtcl2  24703  cphsqrtcl3  24704  ipcau2  24751  plypf1  25726  dvply2g  25798  taylply2  25880  reefgim  25962  efabl  26059  efsubm  26060  amgmlem  26494  amgm  26495  wilthlem2  26573  wilthlem3  26574  dchrelbas3  26741  dchrzrhmul  26749  dchrmulcl  26752  dchrn0  26753  dchrinvcl  26756  dchrsum2  26771  sum2dchr  26777  qabvexp  27129  ostthlem2  27131  padicabv  27133  ostth2lem2  27137  ostth3  27141  xrge0slmod  32463  ccfldsrarelvec  32745  ccfldextdgrr  32746  iistmd  32882  xrge0iifmhm  32919  xrge0pluscn  32920  qqhrhm  32969  cnsrexpcl  41907  cnsrplycl  41909  rngunsnply  41915  amgm2d  42950  amgm3d  42951  amgm4d  42952  cnfldsrngmul  46541  aacllem  47848  amgmlemALT  47850  amgmw2d  47851
  Copyright terms: Public domain W3C validator