| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldmul | Structured version Visualization version GIF version | ||
| Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21241. (Revised by GG, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| cnfldmul | ⊢ · = (.r‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 11124 | . . . 4 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | ffn 6670 | . . . 4 ⊢ ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ · Fn (ℂ × ℂ) |
| 4 | fnov 7500 | . . 3 ⊢ ( · Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
| 6 | mpocnfldmul 21247 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld) | |
| 7 | 5, 6 | eqtri 2752 | 1 ⊢ · = (.r‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 · cmul 11049 .rcmulr 17197 ℂfldccnfld 21240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-cnfld 21241 |
| This theorem is referenced by: cncrngOLD 21277 cnfld1OLD 21282 cndrngOLD 21287 cnflddivOLD 21289 cnfldexp 21292 cnsrng 21293 cnsubrglemOLD 21310 absabv 21317 cnsubrg 21320 cnmsubglem 21323 expmhm 21329 nn0srg 21330 rge0srg 21331 zringmulr 21343 expghm 21361 psgnghm 21465 psgnco 21468 evpmodpmf1o 21481 remulr 21496 mdetralt 22471 clmmul 24951 clmmcl 24961 isclmp 24973 cnlmod 25016 cnncvsmulassdemo 25040 cphsubrglem 25053 cphdivcl 25058 cphabscl 25061 cphsqrtcl2 25062 cphsqrtcl3 25063 ipcau2 25110 plypf1 26093 dvply2gOLD 26169 taylply2OLD 26252 reefgim 26336 efabl 26435 efsubm 26436 amgmlem 26876 amgm 26877 wilthlem2 26955 wilthlem3 26956 dchrelbas3 27125 dchrzrhmul 27133 dchrmulcl 27136 dchrn0 27137 dchrinvcl 27140 dchrsum2 27155 sum2dchr 27161 qabvexp 27513 ostthlem2 27515 padicabv 27517 ostth2lem2 27521 ostth3 27525 xrge0slmod 33292 zringfrac 33498 ccfldsrarelvec 33639 ccfldextdgrr 33640 constrelextdg2 33710 constrsdrg 33738 2sqr3minply 33743 cos9thpiminplylem6 33750 iistmd 33865 xrge0iifmhm 33902 xrge0pluscn 33903 qqhrhm 33952 cnsrexpcl 43127 cnsrplycl 43129 rngunsnply 43131 amgm2d 44160 amgm3d 44161 amgm4d 44162 cnfldsrngmul 48124 aacllem 49763 amgmlemALT 49765 amgmw2d 49766 |
| Copyright terms: Public domain | W3C validator |