MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmul Structured version   Visualization version   GIF version

Theorem cnfldmul 20825
Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldmul · = (.r‘ℂfld)

Proof of Theorem cnfldmul
StepHypRef Expression
1 mulex 12922 . 2 · ∈ V
2 cnfldstr 20821 . . 3 fld Struct ⟨1, 13⟩
3 mulrid 17183 . . 3 .r = Slot (.r‘ndx)
4 snsstp3 4782 . . . 4 {⟨(.r‘ndx), · ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
5 ssun1 4136 . . . . 5 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
6 ssun1 4136 . . . . . 6 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 df-cnfld 20820 . . . . . 6 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
86, 7sseqtrri 3985 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld
95, 8sstri 3957 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld
104, 9sstri 3957 . . 3 {⟨(.r‘ndx), · ⟩} ⊆ ℂfld
112, 3, 10strfv 17084 . 2 ( · ∈ V → · = (.r‘ℂfld))
121, 11ax-mp 5 1 · = (.r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3447  cun 3912  {csn 4590  {ctp 4594  cop 4596  ccom 5641  cfv 6500  cc 11057  1c1 11060   + caddc 11062   · cmul 11064  cle 11198  cmin 11393  3c3 12217  cdc 12626  ccj 14990  abscabs 15128  ndxcnx 17073  Basecbs 17091  +gcplusg 17141  .rcmulr 17142  *𝑟cstv 17143  TopSetcts 17147  lecple 17148  distcds 17150  UnifSetcunif 17151  MetOpencmopn 20809  metUnifcmetu 20810  fldccnfld 20819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-fz 13434  df-struct 17027  df-slot 17062  df-ndx 17074  df-base 17092  df-plusg 17154  df-mulr 17155  df-starv 17156  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-cnfld 20820
This theorem is referenced by:  cncrng  20841  cnfld1  20845  cndrng  20849  cnflddiv  20850  cnfldexp  20853  cnsrng  20854  cnsubrglem  20870  absabv  20877  cnsubrg  20880  cnmsubglem  20883  expmhm  20889  nn0srg  20890  rge0srg  20891  zringmulr  20901  expghm  20919  psgnghm  21007  psgnco  21010  evpmodpmf1o  21023  remulr  21038  mdetralt  21980  clmmul  24461  clmmcl  24471  isclmp  24483  cnlmod  24526  cnncvsmulassdemo  24551  cphsubrglem  24564  cphdivcl  24569  cphabscl  24572  cphsqrtcl2  24573  cphsqrtcl3  24574  ipcau2  24621  plypf1  25596  dvply2g  25668  taylply2  25750  reefgim  25832  efabl  25929  efsubm  25930  amgmlem  26362  amgm  26363  wilthlem2  26441  wilthlem3  26442  dchrelbas3  26609  dchrzrhmul  26617  dchrmulcl  26620  dchrn0  26621  dchrinvcl  26624  dchrsum2  26639  sum2dchr  26645  qabvexp  26997  ostthlem2  26999  padicabv  27001  ostth2lem2  27005  ostth3  27009  xrge0slmod  32194  ccfldsrarelvec  32419  ccfldextdgrr  32420  iistmd  32547  xrge0iifmhm  32584  xrge0pluscn  32585  qqhrhm  32634  cnsrexpcl  41539  cnsrplycl  41541  rngunsnply  41547  amgm2d  42563  amgm3d  42564  amgm4d  42565  cnfldsrngmul  46155  aacllem  47338  amgmlemALT  47340  amgmw2d  47341
  Copyright terms: Public domain W3C validator