![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gg-cnfldex | Structured version Visualization version GIF version |
Description: The field of complex numbers is a set. Alternative proof of cnfldex 20939. This version direcly uses df-cnfld 20937, which is discouraged, however it saves all complex numbers axioms and ax-pow 5362. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 16-Mar-2025.) |
Ref | Expression |
---|---|
gg-cnfldex | ⊢ ℂfld ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnfld 20937 | . 2 ⊢ ℂfld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
2 | tpex 7730 | . . . 4 ⊢ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∈ V | |
3 | snex 5430 | . . . 4 ⊢ {⟨(*𝑟‘ndx), ∗⟩} ∈ V | |
4 | 2, 3 | unex 7729 | . . 3 ⊢ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∈ V |
5 | tpex 7730 | . . . 4 ⊢ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∈ V | |
6 | snex 5430 | . . . 4 ⊢ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} ∈ V | |
7 | 5, 6 | unex 7729 | . . 3 ⊢ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∈ V |
8 | 4, 7 | unex 7729 | . 2 ⊢ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∈ V |
9 | 1, 8 | eqeltri 2829 | 1 ⊢ ℂfld ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 {csn 4627 {ctp 4631 ⟨cop 4633 ∘ ccom 5679 ‘cfv 6540 ℂcc 11104 + caddc 11109 · cmul 11111 ≤ cle 11245 − cmin 11440 ∗ccj 15039 abscabs 15177 ndxcnx 17122 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 *𝑟cstv 17195 TopSetcts 17199 lecple 17200 distcds 17202 UnifSetcunif 17203 MetOpencmopn 20926 metUnifcmetu 20927 ℂfldccnfld 20936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-tp 4632 df-uni 4908 df-cnfld 20937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |