MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfunALTOLD Structured version   Visualization version   GIF version

Theorem cnfldfunALTOLD 21415
Description: Obsolete version of cnfldfunALT 21402 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnfldfunALTOLD Fun ℂfld

Proof of Theorem cnfldfunALTOLD
StepHypRef Expression
1 basendxnplusgndx 17341 . . . . . . 7 (Base‘ndx) ≠ (+g‘ndx)
2 basendxnmulrndx 17354 . . . . . . 7 (Base‘ndx) ≠ (.r‘ndx)
3 plusgndxnmulrndx 17356 . . . . . . 7 (+g‘ndx) ≠ (.r‘ndx)
4 fvex 6933 . . . . . . . 8 (Base‘ndx) ∈ V
5 fvex 6933 . . . . . . . 8 (+g‘ndx) ∈ V
6 fvex 6933 . . . . . . . 8 (.r‘ndx) ∈ V
7 cnex 11265 . . . . . . . 8 ℂ ∈ V
8 addex 13054 . . . . . . . 8 + ∈ V
9 mulex 13056 . . . . . . . 8 · ∈ V
104, 5, 6, 7, 8, 9funtp 6635 . . . . . . 7 (((Base‘ndx) ≠ (+g‘ndx) ∧ (Base‘ndx) ≠ (.r‘ndx) ∧ (+g‘ndx) ≠ (.r‘ndx)) → Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
111, 2, 3, 10mp3an 1461 . . . . . 6 Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
12 fvex 6933 . . . . . . 7 (*𝑟‘ndx) ∈ V
13 cjf 15153 . . . . . . . 8 ∗:ℂ⟶ℂ
14 fex 7263 . . . . . . . 8 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
1513, 7, 14mp2an 691 . . . . . . 7 ∗ ∈ V
1612, 15funsn 6631 . . . . . 6 Fun {⟨(*𝑟‘ndx), ∗⟩}
1711, 16pm3.2i 470 . . . . 5 (Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩})
187, 8, 9dmtpop 6249 . . . . . . 7 dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} = {(Base‘ndx), (+g‘ndx), (.r‘ndx)}
1915dmsnop 6247 . . . . . . 7 dom {⟨(*𝑟‘ndx), ∗⟩} = {(*𝑟‘ndx)}
2018, 19ineq12i 4239 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)})
21 starvndxnbasendx 17363 . . . . . . . 8 (*𝑟‘ndx) ≠ (Base‘ndx)
2221necomi 3001 . . . . . . 7 (Base‘ndx) ≠ (*𝑟‘ndx)
23 starvndxnplusgndx 17364 . . . . . . . 8 (*𝑟‘ndx) ≠ (+g‘ndx)
2423necomi 3001 . . . . . . 7 (+g‘ndx) ≠ (*𝑟‘ndx)
25 starvndxnmulrndx 17365 . . . . . . . 8 (*𝑟‘ndx) ≠ (.r‘ndx)
2625necomi 3001 . . . . . . 7 (.r‘ndx) ≠ (*𝑟‘ndx)
27 disjtpsn 4740 . . . . . . 7 (((Base‘ndx) ≠ (*𝑟‘ndx) ∧ (+g‘ndx) ≠ (*𝑟‘ndx) ∧ (.r‘ndx) ≠ (*𝑟‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
2822, 24, 26, 27mp3an 1461 . . . . . 6 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
2920, 28eqtri 2768 . . . . 5 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅
30 funun 6624 . . . . 5 (((Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩}) ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅) → Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}))
3117, 29, 30mp2an 691 . . . 4 Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32 slotsdifplendx 17434 . . . . . . . 8 ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
3332simpri 485 . . . . . . 7 (TopSet‘ndx) ≠ (le‘ndx)
34 dsndxntsetndx 17452 . . . . . . . 8 (dist‘ndx) ≠ (TopSet‘ndx)
3534necomi 3001 . . . . . . 7 (TopSet‘ndx) ≠ (dist‘ndx)
36 slotsdifdsndx 17453 . . . . . . . 8 ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
3736simpri 485 . . . . . . 7 (le‘ndx) ≠ (dist‘ndx)
38 fvex 6933 . . . . . . . 8 (TopSet‘ndx) ∈ V
39 fvex 6933 . . . . . . . 8 (le‘ndx) ∈ V
40 fvex 6933 . . . . . . . 8 (dist‘ndx) ∈ V
41 fvex 6933 . . . . . . . 8 (MetOpen‘(abs ∘ − )) ∈ V
42 letsr 18663 . . . . . . . . 9 ≤ ∈ TosetRel
4342elexi 3511 . . . . . . . 8 ≤ ∈ V
44 absf 15386 . . . . . . . . . 10 abs:ℂ⟶ℝ
45 fex 7263 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4644, 7, 45mp2an 691 . . . . . . . . 9 abs ∈ V
47 subf 11538 . . . . . . . . . 10 − :(ℂ × ℂ)⟶ℂ
487, 7xpex 7788 . . . . . . . . . 10 (ℂ × ℂ) ∈ V
49 fex 7263 . . . . . . . . . 10 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
5047, 48, 49mp2an 691 . . . . . . . . 9 − ∈ V
5146, 50coex 7970 . . . . . . . 8 (abs ∘ − ) ∈ V
5238, 39, 40, 41, 43, 51funtp 6635 . . . . . . 7 (((TopSet‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩})
5333, 35, 37, 52mp3an 1461 . . . . . 6 Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
54 fvex 6933 . . . . . . 7 (UnifSet‘ndx) ∈ V
55 fvex 6933 . . . . . . 7 (metUnif‘(abs ∘ − )) ∈ V
5654, 55funsn 6631 . . . . . 6 Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5753, 56pm3.2i 470 . . . . 5 (Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5841, 43, 51dmtpop 6249 . . . . . . 7 dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} = {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}
5955dmsnop 6247 . . . . . . 7 dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} = {(UnifSet‘ndx)}
6058, 59ineq12i 4239 . . . . . 6 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)})
61 slotsdifunifndx 17460 . . . . . . . 8 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
62 unifndxntsetndx 17459 . . . . . . . . . . . 12 (UnifSet‘ndx) ≠ (TopSet‘ndx)
6362necomi 3001 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (UnifSet‘ndx)
6463a1i 11 . . . . . . . . . 10 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (TopSet‘ndx) ≠ (UnifSet‘ndx))
6564anim1i 614 . . . . . . . . 9 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
66 3anass 1095 . . . . . . . . 9 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) ↔ ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
6765, 66sylibr 234 . . . . . . . 8 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
6861, 67ax-mp 5 . . . . . . 7 ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))
69 disjtpsn 4740 . . . . . . 7 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
7068, 69ax-mp 5 . . . . . 6 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
7160, 70eqtri 2768 . . . . 5 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
72 funun 6624 . . . . 5 (((Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∧ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) → Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7357, 71, 72mp2an 691 . . . 4 Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7431, 73pm3.2i 470 . . 3 (Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
75 dmun 5935 . . . . 5 dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩})
76 dmun 5935 . . . . 5 dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7775, 76ineq12i 4239 . . . 4 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7818, 58ineq12i 4239 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
79 tsetndxnbasendx 17415 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (Base‘ndx)
8079necomi 3001 . . . . . . . . . . 11 (Base‘ndx) ≠ (TopSet‘ndx)
81 tsetndxnplusgndx 17416 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (+g‘ndx)
8281necomi 3001 . . . . . . . . . . 11 (+g‘ndx) ≠ (TopSet‘ndx)
83 tsetndxnmulrndx 17417 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (.r‘ndx)
8483necomi 3001 . . . . . . . . . . 11 (.r‘ndx) ≠ (TopSet‘ndx)
8580, 82, 843pm3.2i 1339 . . . . . . . . . 10 ((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx))
86 plendxnbasendx 17429 . . . . . . . . . . . 12 (le‘ndx) ≠ (Base‘ndx)
8786necomi 3001 . . . . . . . . . . 11 (Base‘ndx) ≠ (le‘ndx)
88 plendxnplusgndx 17430 . . . . . . . . . . . 12 (le‘ndx) ≠ (+g‘ndx)
8988necomi 3001 . . . . . . . . . . 11 (+g‘ndx) ≠ (le‘ndx)
90 plendxnmulrndx 17431 . . . . . . . . . . . 12 (le‘ndx) ≠ (.r‘ndx)
9190necomi 3001 . . . . . . . . . . 11 (.r‘ndx) ≠ (le‘ndx)
9287, 89, 913pm3.2i 1339 . . . . . . . . . 10 ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx))
93 dsndxnbasendx 17448 . . . . . . . . . . . 12 (dist‘ndx) ≠ (Base‘ndx)
9493necomi 3001 . . . . . . . . . . 11 (Base‘ndx) ≠ (dist‘ndx)
95 dsndxnplusgndx 17449 . . . . . . . . . . . 12 (dist‘ndx) ≠ (+g‘ndx)
9695necomi 3001 . . . . . . . . . . 11 (+g‘ndx) ≠ (dist‘ndx)
97 dsndxnmulrndx 17450 . . . . . . . . . . . 12 (dist‘ndx) ≠ (.r‘ndx)
9897necomi 3001 . . . . . . . . . . 11 (.r‘ndx) ≠ (dist‘ndx)
9994, 96, 983pm3.2i 1339 . . . . . . . . . 10 ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))
100 disjtp2 4741 . . . . . . . . . 10 ((((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx)) ∧ ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx)) ∧ ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅)
10185, 92, 99, 100mp3an 1461 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
10278, 101eqtri 2768 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
10318, 59ineq12i 4239 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)})
104 unifndxnbasendx 17458 . . . . . . . . . . . . . . 15 (UnifSet‘ndx) ≠ (Base‘ndx)
105104necomi 3001 . . . . . . . . . . . . . 14 (Base‘ndx) ≠ (UnifSet‘ndx)
106105a1i 11 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (Base‘ndx) ≠ (UnifSet‘ndx))
107 3simpa 1148 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
108 3anass 1095 . . . . . . . . . . . . 13 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) ↔ ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))))
109106, 107, 108sylanbrc 582 . . . . . . . . . . . 12 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
110109adantr 480 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
11161, 110ax-mp 5 . . . . . . . . . 10 ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))
112 disjtpsn 4740 . . . . . . . . . 10 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
113111, 112ax-mp 5 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
114103, 113eqtri 2768 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
115102, 114pm3.2i 470 . . . . . . 7 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
116 undisj2 4486 . . . . . . 7 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
117115, 116mpbi 230 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
11819, 58ineq12i 4239 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
119 tsetndxnstarvndx 17418 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (*𝑟‘ndx)
120 necom 3000 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (le‘ndx) ↔ (le‘ndx) ≠ (*𝑟‘ndx))
121120biimpi 216 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (le‘ndx) → (le‘ndx) ≠ (*𝑟‘ndx))
122121adantr 480 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) → (le‘ndx) ≠ (*𝑟‘ndx))
12332, 122ax-mp 5 . . . . . . . . . . 11 (le‘ndx) ≠ (*𝑟‘ndx)
124 necom 3000 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (dist‘ndx) ↔ (dist‘ndx) ≠ (*𝑟‘ndx))
125124biimpi 216 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (dist‘ndx) → (dist‘ndx) ≠ (*𝑟‘ndx))
126125adantr 480 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → (dist‘ndx) ≠ (*𝑟‘ndx))
12736, 126ax-mp 5 . . . . . . . . . . 11 (dist‘ndx) ≠ (*𝑟‘ndx)
128 disjtpsn 4740 . . . . . . . . . . 11 (((TopSet‘ndx) ≠ (*𝑟‘ndx) ∧ (le‘ndx) ≠ (*𝑟‘ndx) ∧ (dist‘ndx) ≠ (*𝑟‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
129119, 123, 127, 128mp3an 1461 . . . . . . . . . 10 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
130129ineqcomi 4232 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
131118, 130eqtri 2768 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
13219, 59ineq12i 4239 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)})
133 simpl3 1193 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → (*𝑟‘ndx) ≠ (UnifSet‘ndx))
13461, 133ax-mp 5 . . . . . . . . . 10 (*𝑟‘ndx) ≠ (UnifSet‘ndx)
135 disjsn2 4737 . . . . . . . . . 10 ((*𝑟‘ndx) ≠ (UnifSet‘ndx) → ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
136134, 135ax-mp 5 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
137132, 136eqtri 2768 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
138131, 137pm3.2i 470 . . . . . . 7 ((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
139 undisj2 4486 . . . . . . 7 (((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
140138, 139mpbi 230 . . . . . 6 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
141117, 140pm3.2i 470 . . . . 5 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
142 undisj1 4485 . . . . 5 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) ↔ ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
143141, 142mpbi 230 . . . 4 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
14477, 143eqtri 2768 . . 3 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
145 funun 6624 . . 3 (((Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∧ (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) → Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
14674, 144, 145mp2an 691 . 2 Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
147 dfcnfldOLD 21403 . . 3 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
148147funeqi 6599 . 2 (Fun ℂfld ↔ Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
149146, 148mpbir 231 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  cin 3975  c0 4352  {csn 4648  {ctp 4652  cop 4654   × cxp 5698  dom cdm 5700  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  cc 11182  cr 11183   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  ccj 15145  abscabs 15283  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  *𝑟cstv 17313  TopSetcts 17317  lecple 17318  distcds 17320  UnifSetcunif 17321   TosetRel ctsr 18635  MetOpencmopn 21377  metUnifcmetu 21378  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-ps 18636  df-tsr 18637  df-cnfld 21388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator