Proof of Theorem cnfldfunALTOLD
| Step | Hyp | Ref
| Expression |
| 1 | | basendxnplusgndx 17306 |
. . . . . . 7
⊢
(Base‘ndx) ≠ (+g‘ndx) |
| 2 | | basendxnmulrndx 17315 |
. . . . . . 7
⊢
(Base‘ndx) ≠ (.r‘ndx) |
| 3 | | plusgndxnmulrndx 17316 |
. . . . . . 7
⊢
(+g‘ndx) ≠
(.r‘ndx) |
| 4 | | fvex 6894 |
. . . . . . . 8
⊢
(Base‘ndx) ∈ V |
| 5 | | fvex 6894 |
. . . . . . . 8
⊢
(+g‘ndx) ∈ V |
| 6 | | fvex 6894 |
. . . . . . . 8
⊢
(.r‘ndx) ∈ V |
| 7 | | cnex 11215 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 8 | | addex 13010 |
. . . . . . . 8
⊢ + ∈
V |
| 9 | | mulex 13012 |
. . . . . . . 8
⊢ ·
∈ V |
| 10 | 4, 5, 6, 7, 8, 9 | funtp 6598 |
. . . . . . 7
⊢
(((Base‘ndx) ≠ (+g‘ndx) ∧ (Base‘ndx)
≠ (.r‘ndx) ∧ (+g‘ndx) ≠
(.r‘ndx)) → Fun {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉}) |
| 11 | 1, 2, 3, 10 | mp3an 1463 |
. . . . . 6
⊢ Fun
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} |
| 12 | | fvex 6894 |
. . . . . . 7
⊢
(*𝑟‘ndx) ∈ V |
| 13 | | cjf 15128 |
. . . . . . . 8
⊢
∗:ℂ⟶ℂ |
| 14 | | fex 7223 |
. . . . . . . 8
⊢
((∗:ℂ⟶ℂ ∧ ℂ ∈ V) →
∗ ∈ V) |
| 15 | 13, 7, 14 | mp2an 692 |
. . . . . . 7
⊢ ∗
∈ V |
| 16 | 12, 15 | funsn 6594 |
. . . . . 6
⊢ Fun
{〈(*𝑟‘ndx), ∗〉} |
| 17 | 11, 16 | pm3.2i 470 |
. . . . 5
⊢ (Fun
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∧ Fun
{〈(*𝑟‘ndx), ∗〉}) |
| 18 | 7, 8, 9 | dmtpop 6212 |
. . . . . . 7
⊢ dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} = {(Base‘ndx),
(+g‘ndx), (.r‘ndx)} |
| 19 | 15 | dmsnop 6210 |
. . . . . . 7
⊢ dom
{〈(*𝑟‘ndx), ∗〉} =
{(*𝑟‘ndx)} |
| 20 | 18, 19 | ineq12i 4198 |
. . . . . 6
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(*𝑟‘ndx), ∗〉}) =
({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩
{(*𝑟‘ndx)}) |
| 21 | | starvndxnbasendx 17323 |
. . . . . . . 8
⊢
(*𝑟‘ndx) ≠ (Base‘ndx) |
| 22 | 21 | necomi 2987 |
. . . . . . 7
⊢
(Base‘ndx) ≠ (*𝑟‘ndx) |
| 23 | | starvndxnplusgndx 17324 |
. . . . . . . 8
⊢
(*𝑟‘ndx) ≠
(+g‘ndx) |
| 24 | 23 | necomi 2987 |
. . . . . . 7
⊢
(+g‘ndx) ≠
(*𝑟‘ndx) |
| 25 | | starvndxnmulrndx 17325 |
. . . . . . . 8
⊢
(*𝑟‘ndx) ≠
(.r‘ndx) |
| 26 | 25 | necomi 2987 |
. . . . . . 7
⊢
(.r‘ndx) ≠
(*𝑟‘ndx) |
| 27 | | disjtpsn 4696 |
. . . . . . 7
⊢
(((Base‘ndx) ≠ (*𝑟‘ndx) ∧
(+g‘ndx) ≠ (*𝑟‘ndx) ∧
(.r‘ndx) ≠ (*𝑟‘ndx)) →
({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩
{(*𝑟‘ndx)}) = ∅) |
| 28 | 22, 24, 26, 27 | mp3an 1463 |
. . . . . 6
⊢
({(Base‘ndx), (+g‘ndx),
(.r‘ndx)} ∩ {(*𝑟‘ndx)}) =
∅ |
| 29 | 20, 28 | eqtri 2759 |
. . . . 5
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(*𝑟‘ndx), ∗〉}) =
∅ |
| 30 | | funun 6587 |
. . . . 5
⊢ (((Fun
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∧ Fun
{〈(*𝑟‘ndx), ∗〉}) ∧ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(*𝑟‘ndx), ∗〉}) = ∅) →
Fun ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉})) |
| 31 | 17, 29, 30 | mp2an 692 |
. . . 4
⊢ Fun
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) |
| 32 | | slotsdifplendx 17394 |
. . . . . . . 8
⊢
((*𝑟‘ndx) ≠ (le‘ndx) ∧
(TopSet‘ndx) ≠ (le‘ndx)) |
| 33 | 32 | simpri 485 |
. . . . . . 7
⊢
(TopSet‘ndx) ≠ (le‘ndx) |
| 34 | | dsndxntsetndx 17412 |
. . . . . . . 8
⊢
(dist‘ndx) ≠ (TopSet‘ndx) |
| 35 | 34 | necomi 2987 |
. . . . . . 7
⊢
(TopSet‘ndx) ≠ (dist‘ndx) |
| 36 | | slotsdifdsndx 17413 |
. . . . . . . 8
⊢
((*𝑟‘ndx) ≠ (dist‘ndx) ∧
(le‘ndx) ≠ (dist‘ndx)) |
| 37 | 36 | simpri 485 |
. . . . . . 7
⊢
(le‘ndx) ≠ (dist‘ndx) |
| 38 | | fvex 6894 |
. . . . . . . 8
⊢
(TopSet‘ndx) ∈ V |
| 39 | | fvex 6894 |
. . . . . . . 8
⊢
(le‘ndx) ∈ V |
| 40 | | fvex 6894 |
. . . . . . . 8
⊢
(dist‘ndx) ∈ V |
| 41 | | fvex 6894 |
. . . . . . . 8
⊢
(MetOpen‘(abs ∘ − )) ∈ V |
| 42 | | letsr 18608 |
. . . . . . . . 9
⊢ ≤
∈ TosetRel |
| 43 | 42 | elexi 3487 |
. . . . . . . 8
⊢ ≤
∈ V |
| 44 | | absf 15361 |
. . . . . . . . . 10
⊢
abs:ℂ⟶ℝ |
| 45 | | fex 7223 |
. . . . . . . . . 10
⊢
((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈
V) |
| 46 | 44, 7, 45 | mp2an 692 |
. . . . . . . . 9
⊢ abs
∈ V |
| 47 | | subf 11489 |
. . . . . . . . . 10
⊢ −
:(ℂ × ℂ)⟶ℂ |
| 48 | 7, 7 | xpex 7752 |
. . . . . . . . . 10
⊢ (ℂ
× ℂ) ∈ V |
| 49 | | fex 7223 |
. . . . . . . . . 10
⊢ ((
− :(ℂ × ℂ)⟶ℂ ∧ (ℂ ×
ℂ) ∈ V) → − ∈ V) |
| 50 | 47, 48, 49 | mp2an 692 |
. . . . . . . . 9
⊢ −
∈ V |
| 51 | 46, 50 | coex 7931 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ V |
| 52 | 38, 39, 40, 41, 43, 51 | funtp 6598 |
. . . . . . 7
⊢
(((TopSet‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠
(dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → Fun
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) |
| 53 | 33, 35, 37, 52 | mp3an 1463 |
. . . . . 6
⊢ Fun
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} |
| 54 | | fvex 6894 |
. . . . . . 7
⊢
(UnifSet‘ndx) ∈ V |
| 55 | | fvex 6894 |
. . . . . . 7
⊢
(metUnif‘(abs ∘ − )) ∈ V |
| 56 | 54, 55 | funsn 6594 |
. . . . . 6
⊢ Fun
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉} |
| 57 | 53, 56 | pm3.2i 470 |
. . . . 5
⊢ (Fun
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∧ Fun {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉}) |
| 58 | 41, 43, 51 | dmtpop 6212 |
. . . . . . 7
⊢ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} = {(TopSet‘ndx), (le‘ndx),
(dist‘ndx)} |
| 59 | 55 | dmsnop 6210 |
. . . . . . 7
⊢ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} =
{(UnifSet‘ndx)} |
| 60 | 58, 59 | ineq12i 4198 |
. . . . . 6
⊢ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∩ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉}) = ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)}
∩ {(UnifSet‘ndx)}) |
| 61 | | slotsdifunifndx 17420 |
. . . . . . . 8
⊢
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧
((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx))) |
| 62 | | unifndxntsetndx 17419 |
. . . . . . . . . . . 12
⊢
(UnifSet‘ndx) ≠ (TopSet‘ndx) |
| 63 | 62 | necomi 2987 |
. . . . . . . . . . 11
⊢
(TopSet‘ndx) ≠ (UnifSet‘ndx) |
| 64 | 63 | a1i 11 |
. . . . . . . . . 10
⊢
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) →
(TopSet‘ndx) ≠ (UnifSet‘ndx)) |
| 65 | 64 | anim1i 615 |
. . . . . . . . 9
⊢
((((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧
((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧
((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx)))) |
| 66 | | 3anass 1094 |
. . . . . . . . 9
⊢
(((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠
(UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) ↔
((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠
(UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx)))) |
| 67 | 65, 66 | sylibr 234 |
. . . . . . . 8
⊢
((((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧
((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧
(le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx))) |
| 68 | 61, 67 | ax-mp 5 |
. . . . . . 7
⊢
((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠
(UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx)) |
| 69 | | disjtpsn 4696 |
. . . . . . 7
⊢
(((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠
(UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) →
({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩
{(UnifSet‘ndx)}) = ∅) |
| 70 | 68, 69 | ax-mp 5 |
. . . . . 6
⊢
({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩
{(UnifSet‘ndx)}) = ∅ |
| 71 | 60, 70 | eqtri 2759 |
. . . . 5
⊢ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∩ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉}) = ∅ |
| 72 | | funun 6587 |
. . . . 5
⊢ (((Fun
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∧ Fun {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉}) ∧ (dom {〈(TopSet‘ndx), (MetOpen‘(abs
∘ − ))〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), (abs ∘ − )〉} ∩ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) =
∅) → Fun ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
| 73 | 57, 71, 72 | mp2an 692 |
. . . 4
⊢ Fun
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉}) |
| 74 | 31, 73 | pm3.2i 470 |
. . 3
⊢ (Fun
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∧ Fun
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
| 75 | | dmun 5895 |
. . . . 5
⊢ dom
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) = (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪ dom
{〈(*𝑟‘ndx), ∗〉}) |
| 76 | | dmun 5895 |
. . . . 5
⊢ dom
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉}) = (dom {〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ dom {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}) |
| 77 | 75, 76 | ineq12i 4198 |
. . . 4
⊢ (dom
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∩ dom
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) = ((dom {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ dom {〈(*𝑟‘ndx),
∗〉}) ∩ (dom {〈(TopSet‘ndx), (MetOpen‘(abs
∘ − ))〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), (abs ∘ − )〉} ∪ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
| 78 | 18, 58 | ineq12i 4198 |
. . . . . . . . 9
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ({(Base‘ndx), (+g‘ndx),
(.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx),
(dist‘ndx)}) |
| 79 | | tsetndxnbasendx 17375 |
. . . . . . . . . . . 12
⊢
(TopSet‘ndx) ≠ (Base‘ndx) |
| 80 | 79 | necomi 2987 |
. . . . . . . . . . 11
⊢
(Base‘ndx) ≠ (TopSet‘ndx) |
| 81 | | tsetndxnplusgndx 17376 |
. . . . . . . . . . . 12
⊢
(TopSet‘ndx) ≠ (+g‘ndx) |
| 82 | 81 | necomi 2987 |
. . . . . . . . . . 11
⊢
(+g‘ndx) ≠ (TopSet‘ndx) |
| 83 | | tsetndxnmulrndx 17377 |
. . . . . . . . . . . 12
⊢
(TopSet‘ndx) ≠ (.r‘ndx) |
| 84 | 83 | necomi 2987 |
. . . . . . . . . . 11
⊢
(.r‘ndx) ≠ (TopSet‘ndx) |
| 85 | 80, 82, 84 | 3pm3.2i 1340 |
. . . . . . . . . 10
⊢
((Base‘ndx) ≠ (TopSet‘ndx) ∧
(+g‘ndx) ≠ (TopSet‘ndx) ∧
(.r‘ndx) ≠ (TopSet‘ndx)) |
| 86 | | plendxnbasendx 17389 |
. . . . . . . . . . . 12
⊢
(le‘ndx) ≠ (Base‘ndx) |
| 87 | 86 | necomi 2987 |
. . . . . . . . . . 11
⊢
(Base‘ndx) ≠ (le‘ndx) |
| 88 | | plendxnplusgndx 17390 |
. . . . . . . . . . . 12
⊢
(le‘ndx) ≠ (+g‘ndx) |
| 89 | 88 | necomi 2987 |
. . . . . . . . . . 11
⊢
(+g‘ndx) ≠ (le‘ndx) |
| 90 | | plendxnmulrndx 17391 |
. . . . . . . . . . . 12
⊢
(le‘ndx) ≠ (.r‘ndx) |
| 91 | 90 | necomi 2987 |
. . . . . . . . . . 11
⊢
(.r‘ndx) ≠ (le‘ndx) |
| 92 | 87, 89, 91 | 3pm3.2i 1340 |
. . . . . . . . . 10
⊢
((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx)
≠ (le‘ndx) ∧ (.r‘ndx) ≠
(le‘ndx)) |
| 93 | | dsndxnbasendx 17408 |
. . . . . . . . . . . 12
⊢
(dist‘ndx) ≠ (Base‘ndx) |
| 94 | 93 | necomi 2987 |
. . . . . . . . . . 11
⊢
(Base‘ndx) ≠ (dist‘ndx) |
| 95 | | dsndxnplusgndx 17409 |
. . . . . . . . . . . 12
⊢
(dist‘ndx) ≠ (+g‘ndx) |
| 96 | 95 | necomi 2987 |
. . . . . . . . . . 11
⊢
(+g‘ndx) ≠ (dist‘ndx) |
| 97 | | dsndxnmulrndx 17410 |
. . . . . . . . . . . 12
⊢
(dist‘ndx) ≠ (.r‘ndx) |
| 98 | 97 | necomi 2987 |
. . . . . . . . . . 11
⊢
(.r‘ndx) ≠ (dist‘ndx) |
| 99 | 94, 96, 98 | 3pm3.2i 1340 |
. . . . . . . . . 10
⊢
((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx)
≠ (dist‘ndx) ∧ (.r‘ndx) ≠
(dist‘ndx)) |
| 100 | | disjtp2 4697 |
. . . . . . . . . 10
⊢
((((Base‘ndx) ≠ (TopSet‘ndx) ∧
(+g‘ndx) ≠ (TopSet‘ndx) ∧
(.r‘ndx) ≠ (TopSet‘ndx)) ∧ ((Base‘ndx) ≠
(le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧
(.r‘ndx) ≠ (le‘ndx)) ∧ ((Base‘ndx) ≠
(dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧
(.r‘ndx) ≠ (dist‘ndx))) → ({(Base‘ndx),
(+g‘ndx), (.r‘ndx)} ∩
{(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) =
∅) |
| 101 | 85, 92, 99, 100 | mp3an 1463 |
. . . . . . . . 9
⊢
({(Base‘ndx), (+g‘ndx),
(.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx),
(dist‘ndx)}) = ∅ |
| 102 | 78, 101 | eqtri 2759 |
. . . . . . . 8
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ∅ |
| 103 | 18, 59 | ineq12i 4198 |
. . . . . . . . 9
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) =
({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩
{(UnifSet‘ndx)}) |
| 104 | | unifndxnbasendx 17418 |
. . . . . . . . . . . . . . 15
⊢
(UnifSet‘ndx) ≠ (Base‘ndx) |
| 105 | 104 | necomi 2987 |
. . . . . . . . . . . . . 14
⊢
(Base‘ndx) ≠ (UnifSet‘ndx) |
| 106 | 105 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) →
(Base‘ndx) ≠ (UnifSet‘ndx)) |
| 107 | | 3simpa 1148 |
. . . . . . . . . . . . 13
⊢
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) →
((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx))) |
| 108 | | 3anass 1094 |
. . . . . . . . . . . . 13
⊢
(((Base‘ndx) ≠ (UnifSet‘ndx) ∧
(+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx)) ↔ ((Base‘ndx)
≠ (UnifSet‘ndx) ∧ ((+g‘ndx) ≠
(UnifSet‘ndx) ∧ (.r‘ndx) ≠
(UnifSet‘ndx)))) |
| 109 | 106, 107,
108 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) →
((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠
(UnifSet‘ndx) ∧ (.r‘ndx) ≠
(UnifSet‘ndx))) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . 11
⊢
((((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧
((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx))) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧
(+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx))) |
| 111 | 61, 110 | ax-mp 5 |
. . . . . . . . . 10
⊢
((Base‘ndx) ≠ (UnifSet‘ndx) ∧
(+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx)) |
| 112 | | disjtpsn 4696 |
. . . . . . . . . 10
⊢
(((Base‘ndx) ≠ (UnifSet‘ndx) ∧
(+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx)) → ({(Base‘ndx),
(+g‘ndx), (.r‘ndx)} ∩
{(UnifSet‘ndx)}) = ∅) |
| 113 | 111, 112 | ax-mp 5 |
. . . . . . . . 9
⊢
({(Base‘ndx), (+g‘ndx),
(.r‘ndx)} ∩ {(UnifSet‘ndx)}) =
∅ |
| 114 | 103, 113 | eqtri 2759 |
. . . . . . . 8
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) =
∅ |
| 115 | 102, 114 | pm3.2i 470 |
. . . . . . 7
⊢ ((dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ∅ ∧ (dom {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∩ dom {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) = ∅) |
| 116 | | undisj2 4443 |
. . . . . . 7
⊢ (((dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ∅ ∧ (dom {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∩ dom {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) = ∅) ↔ (dom {〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅) |
| 117 | 115, 116 | mpbi 230 |
. . . . . 6
⊢ (dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅ |
| 118 | 19, 58 | ineq12i 4198 |
. . . . . . . . 9
⊢ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx),
(le‘ndx), (dist‘ndx)}) |
| 119 | | tsetndxnstarvndx 17378 |
. . . . . . . . . . 11
⊢
(TopSet‘ndx) ≠
(*𝑟‘ndx) |
| 120 | | necom 2986 |
. . . . . . . . . . . . . 14
⊢
((*𝑟‘ndx) ≠ (le‘ndx) ↔
(le‘ndx) ≠ (*𝑟‘ndx)) |
| 121 | 120 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
((*𝑟‘ndx) ≠ (le‘ndx) →
(le‘ndx) ≠ (*𝑟‘ndx)) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((*𝑟‘ndx) ≠ (le‘ndx) ∧
(TopSet‘ndx) ≠ (le‘ndx)) → (le‘ndx) ≠
(*𝑟‘ndx)) |
| 123 | 32, 122 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(le‘ndx) ≠ (*𝑟‘ndx) |
| 124 | | necom 2986 |
. . . . . . . . . . . . . 14
⊢
((*𝑟‘ndx) ≠ (dist‘ndx) ↔
(dist‘ndx) ≠ (*𝑟‘ndx)) |
| 125 | 124 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
((*𝑟‘ndx) ≠ (dist‘ndx) →
(dist‘ndx) ≠ (*𝑟‘ndx)) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((*𝑟‘ndx) ≠ (dist‘ndx) ∧
(le‘ndx) ≠ (dist‘ndx)) → (dist‘ndx) ≠
(*𝑟‘ndx)) |
| 127 | 36, 126 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(dist‘ndx) ≠ (*𝑟‘ndx) |
| 128 | | disjtpsn 4696 |
. . . . . . . . . . 11
⊢
(((TopSet‘ndx) ≠ (*𝑟‘ndx) ∧
(le‘ndx) ≠ (*𝑟‘ndx) ∧ (dist‘ndx)
≠ (*𝑟‘ndx)) → ({(TopSet‘ndx),
(le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) =
∅) |
| 129 | 119, 123,
127, 128 | mp3an 1463 |
. . . . . . . . . 10
⊢
({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩
{(*𝑟‘ndx)}) = ∅ |
| 130 | 129 | ineqcomi 4191 |
. . . . . . . . 9
⊢
({(*𝑟‘ndx)} ∩ {(TopSet‘ndx),
(le‘ndx), (dist‘ndx)}) = ∅ |
| 131 | 118, 130 | eqtri 2759 |
. . . . . . . 8
⊢ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ∅ |
| 132 | 19, 59 | ineq12i 4198 |
. . . . . . . . 9
⊢ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) =
({(*𝑟‘ndx)} ∩
{(UnifSet‘ndx)}) |
| 133 | | simpl3 1194 |
. . . . . . . . . . 11
⊢
((((+g‘ndx) ≠ (UnifSet‘ndx) ∧
(.r‘ndx) ≠ (UnifSet‘ndx) ∧
(*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧
((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠
(UnifSet‘ndx))) → (*𝑟‘ndx) ≠
(UnifSet‘ndx)) |
| 134 | 61, 133 | ax-mp 5 |
. . . . . . . . . 10
⊢
(*𝑟‘ndx) ≠
(UnifSet‘ndx) |
| 135 | | disjsn2 4693 |
. . . . . . . . . 10
⊢
((*𝑟‘ndx) ≠ (UnifSet‘ndx) →
({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) =
∅) |
| 136 | 134, 135 | ax-mp 5 |
. . . . . . . . 9
⊢
({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) =
∅ |
| 137 | 132, 136 | eqtri 2759 |
. . . . . . . 8
⊢ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ dom
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) =
∅ |
| 138 | 131, 137 | pm3.2i 470 |
. . . . . . 7
⊢ ((dom
{〈(*𝑟‘ndx), ∗〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ∅ ∧ (dom {〈(*𝑟‘ndx),
∗〉} ∩ dom {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) = ∅) |
| 139 | | undisj2 4443 |
. . . . . . 7
⊢ (((dom
{〈(*𝑟‘ndx), ∗〉} ∩ dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉}) = ∅ ∧ (dom {〈(*𝑟‘ndx),
∗〉} ∩ dom {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) = ∅) ↔ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅) |
| 140 | 138, 139 | mpbi 230 |
. . . . . 6
⊢ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅ |
| 141 | 117, 140 | pm3.2i 470 |
. . . . 5
⊢ ((dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅ ∧ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅) |
| 142 | | undisj1 4442 |
. . . . 5
⊢ (((dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅ ∧ (dom
{〈(*𝑟‘ndx), ∗〉} ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅) ↔ ((dom {〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪ dom
{〈(*𝑟‘ndx), ∗〉}) ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅) |
| 143 | 141, 142 | mpbi 230 |
. . . 4
⊢ ((dom
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪ dom
{〈(*𝑟‘ndx), ∗〉}) ∩ (dom
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ dom {〈(UnifSet‘ndx), (metUnif‘(abs ∘
− ))〉})) = ∅ |
| 144 | 77, 143 | eqtri 2759 |
. . 3
⊢ (dom
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∩ dom
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) = ∅ |
| 145 | | funun 6587 |
. . 3
⊢ (((Fun
({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∧ Fun
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) ∧ (dom ({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∩ dom ({〈(TopSet‘ndx), (MetOpen‘(abs
∘ − ))〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), (abs ∘ − )〉} ∪
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) =
∅) → Fun (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}))) |
| 146 | 74, 144, 145 | mp2an 692 |
. 2
⊢ Fun
(({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), +
〉, 〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
| 147 | | dfcnfldOLD 21336 |
. . 3
⊢
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
| 148 | 147 | funeqi 6562 |
. 2
⊢ (Fun
ℂfld ↔ Fun (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}))) |
| 149 | 146, 148 | mpbir 231 |
1
⊢ Fun
ℂfld |