MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfunALTOLD Structured version   Visualization version   GIF version

Theorem cnfldfunALTOLD 21363
Description: Obsolete version of cnfldfunALT 21350 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnfldfunALTOLD Fun ℂfld

Proof of Theorem cnfldfunALTOLD
StepHypRef Expression
1 basendxnplusgndx 17291 . . . . . . 7 (Base‘ndx) ≠ (+g‘ndx)
2 basendxnmulrndx 17304 . . . . . . 7 (Base‘ndx) ≠ (.r‘ndx)
3 plusgndxnmulrndx 17306 . . . . . . 7 (+g‘ndx) ≠ (.r‘ndx)
4 fvex 6913 . . . . . . . 8 (Base‘ndx) ∈ V
5 fvex 6913 . . . . . . . 8 (+g‘ndx) ∈ V
6 fvex 6913 . . . . . . . 8 (.r‘ndx) ∈ V
7 cnex 11235 . . . . . . . 8 ℂ ∈ V
8 addex 13020 . . . . . . . 8 + ∈ V
9 mulex 13022 . . . . . . . 8 · ∈ V
104, 5, 6, 7, 8, 9funtp 6615 . . . . . . 7 (((Base‘ndx) ≠ (+g‘ndx) ∧ (Base‘ndx) ≠ (.r‘ndx) ∧ (+g‘ndx) ≠ (.r‘ndx)) → Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
111, 2, 3, 10mp3an 1457 . . . . . 6 Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
12 fvex 6913 . . . . . . 7 (*𝑟‘ndx) ∈ V
13 cjf 15104 . . . . . . . 8 ∗:ℂ⟶ℂ
14 fex 7242 . . . . . . . 8 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
1513, 7, 14mp2an 690 . . . . . . 7 ∗ ∈ V
1612, 15funsn 6611 . . . . . 6 Fun {⟨(*𝑟‘ndx), ∗⟩}
1711, 16pm3.2i 469 . . . . 5 (Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩})
187, 8, 9dmtpop 6228 . . . . . . 7 dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} = {(Base‘ndx), (+g‘ndx), (.r‘ndx)}
1915dmsnop 6226 . . . . . . 7 dom {⟨(*𝑟‘ndx), ∗⟩} = {(*𝑟‘ndx)}
2018, 19ineq12i 4210 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)})
21 starvndxnbasendx 17313 . . . . . . . 8 (*𝑟‘ndx) ≠ (Base‘ndx)
2221necomi 2984 . . . . . . 7 (Base‘ndx) ≠ (*𝑟‘ndx)
23 starvndxnplusgndx 17314 . . . . . . . 8 (*𝑟‘ndx) ≠ (+g‘ndx)
2423necomi 2984 . . . . . . 7 (+g‘ndx) ≠ (*𝑟‘ndx)
25 starvndxnmulrndx 17315 . . . . . . . 8 (*𝑟‘ndx) ≠ (.r‘ndx)
2625necomi 2984 . . . . . . 7 (.r‘ndx) ≠ (*𝑟‘ndx)
27 disjtpsn 4723 . . . . . . 7 (((Base‘ndx) ≠ (*𝑟‘ndx) ∧ (+g‘ndx) ≠ (*𝑟‘ndx) ∧ (.r‘ndx) ≠ (*𝑟‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
2822, 24, 26, 27mp3an 1457 . . . . . 6 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
2920, 28eqtri 2753 . . . . 5 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅
30 funun 6604 . . . . 5 (((Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩}) ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅) → Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}))
3117, 29, 30mp2an 690 . . . 4 Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32 slotsdifplendx 17384 . . . . . . . 8 ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
3332simpri 484 . . . . . . 7 (TopSet‘ndx) ≠ (le‘ndx)
34 dsndxntsetndx 17402 . . . . . . . 8 (dist‘ndx) ≠ (TopSet‘ndx)
3534necomi 2984 . . . . . . 7 (TopSet‘ndx) ≠ (dist‘ndx)
36 slotsdifdsndx 17403 . . . . . . . 8 ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
3736simpri 484 . . . . . . 7 (le‘ndx) ≠ (dist‘ndx)
38 fvex 6913 . . . . . . . 8 (TopSet‘ndx) ∈ V
39 fvex 6913 . . . . . . . 8 (le‘ndx) ∈ V
40 fvex 6913 . . . . . . . 8 (dist‘ndx) ∈ V
41 fvex 6913 . . . . . . . 8 (MetOpen‘(abs ∘ − )) ∈ V
42 letsr 18613 . . . . . . . . 9 ≤ ∈ TosetRel
4342elexi 3483 . . . . . . . 8 ≤ ∈ V
44 absf 15337 . . . . . . . . . 10 abs:ℂ⟶ℝ
45 fex 7242 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4644, 7, 45mp2an 690 . . . . . . . . 9 abs ∈ V
47 subf 11508 . . . . . . . . . 10 − :(ℂ × ℂ)⟶ℂ
487, 7xpex 7760 . . . . . . . . . 10 (ℂ × ℂ) ∈ V
49 fex 7242 . . . . . . . . . 10 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
5047, 48, 49mp2an 690 . . . . . . . . 9 − ∈ V
5146, 50coex 7942 . . . . . . . 8 (abs ∘ − ) ∈ V
5238, 39, 40, 41, 43, 51funtp 6615 . . . . . . 7 (((TopSet‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩})
5333, 35, 37, 52mp3an 1457 . . . . . 6 Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
54 fvex 6913 . . . . . . 7 (UnifSet‘ndx) ∈ V
55 fvex 6913 . . . . . . 7 (metUnif‘(abs ∘ − )) ∈ V
5654, 55funsn 6611 . . . . . 6 Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5753, 56pm3.2i 469 . . . . 5 (Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5841, 43, 51dmtpop 6228 . . . . . . 7 dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} = {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}
5955dmsnop 6226 . . . . . . 7 dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} = {(UnifSet‘ndx)}
6058, 59ineq12i 4210 . . . . . 6 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)})
61 slotsdifunifndx 17410 . . . . . . . 8 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
62 unifndxntsetndx 17409 . . . . . . . . . . . 12 (UnifSet‘ndx) ≠ (TopSet‘ndx)
6362necomi 2984 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (UnifSet‘ndx)
6463a1i 11 . . . . . . . . . 10 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (TopSet‘ndx) ≠ (UnifSet‘ndx))
6564anim1i 613 . . . . . . . . 9 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
66 3anass 1092 . . . . . . . . 9 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) ↔ ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
6765, 66sylibr 233 . . . . . . . 8 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
6861, 67ax-mp 5 . . . . . . 7 ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))
69 disjtpsn 4723 . . . . . . 7 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
7068, 69ax-mp 5 . . . . . 6 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
7160, 70eqtri 2753 . . . . 5 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
72 funun 6604 . . . . 5 (((Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∧ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) → Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7357, 71, 72mp2an 690 . . . 4 Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7431, 73pm3.2i 469 . . 3 (Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
75 dmun 5916 . . . . 5 dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩})
76 dmun 5916 . . . . 5 dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7775, 76ineq12i 4210 . . . 4 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7818, 58ineq12i 4210 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
79 tsetndxnbasendx 17365 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (Base‘ndx)
8079necomi 2984 . . . . . . . . . . 11 (Base‘ndx) ≠ (TopSet‘ndx)
81 tsetndxnplusgndx 17366 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (+g‘ndx)
8281necomi 2984 . . . . . . . . . . 11 (+g‘ndx) ≠ (TopSet‘ndx)
83 tsetndxnmulrndx 17367 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (.r‘ndx)
8483necomi 2984 . . . . . . . . . . 11 (.r‘ndx) ≠ (TopSet‘ndx)
8580, 82, 843pm3.2i 1336 . . . . . . . . . 10 ((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx))
86 plendxnbasendx 17379 . . . . . . . . . . . 12 (le‘ndx) ≠ (Base‘ndx)
8786necomi 2984 . . . . . . . . . . 11 (Base‘ndx) ≠ (le‘ndx)
88 plendxnplusgndx 17380 . . . . . . . . . . . 12 (le‘ndx) ≠ (+g‘ndx)
8988necomi 2984 . . . . . . . . . . 11 (+g‘ndx) ≠ (le‘ndx)
90 plendxnmulrndx 17381 . . . . . . . . . . . 12 (le‘ndx) ≠ (.r‘ndx)
9190necomi 2984 . . . . . . . . . . 11 (.r‘ndx) ≠ (le‘ndx)
9287, 89, 913pm3.2i 1336 . . . . . . . . . 10 ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx))
93 dsndxnbasendx 17398 . . . . . . . . . . . 12 (dist‘ndx) ≠ (Base‘ndx)
9493necomi 2984 . . . . . . . . . . 11 (Base‘ndx) ≠ (dist‘ndx)
95 dsndxnplusgndx 17399 . . . . . . . . . . . 12 (dist‘ndx) ≠ (+g‘ndx)
9695necomi 2984 . . . . . . . . . . 11 (+g‘ndx) ≠ (dist‘ndx)
97 dsndxnmulrndx 17400 . . . . . . . . . . . 12 (dist‘ndx) ≠ (.r‘ndx)
9897necomi 2984 . . . . . . . . . . 11 (.r‘ndx) ≠ (dist‘ndx)
9994, 96, 983pm3.2i 1336 . . . . . . . . . 10 ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))
100 disjtp2 4724 . . . . . . . . . 10 ((((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx)) ∧ ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx)) ∧ ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅)
10185, 92, 99, 100mp3an 1457 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
10278, 101eqtri 2753 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
10318, 59ineq12i 4210 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)})
104 unifndxnbasendx 17408 . . . . . . . . . . . . . . 15 (UnifSet‘ndx) ≠ (Base‘ndx)
105104necomi 2984 . . . . . . . . . . . . . 14 (Base‘ndx) ≠ (UnifSet‘ndx)
106105a1i 11 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (Base‘ndx) ≠ (UnifSet‘ndx))
107 3simpa 1145 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
108 3anass 1092 . . . . . . . . . . . . 13 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) ↔ ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))))
109106, 107, 108sylanbrc 581 . . . . . . . . . . . 12 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
110109adantr 479 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
11161, 110ax-mp 5 . . . . . . . . . 10 ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))
112 disjtpsn 4723 . . . . . . . . . 10 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
113111, 112ax-mp 5 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
114103, 113eqtri 2753 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
115102, 114pm3.2i 469 . . . . . . 7 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
116 undisj2 4466 . . . . . . 7 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
117115, 116mpbi 229 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
11819, 58ineq12i 4210 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
119 tsetndxnstarvndx 17368 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (*𝑟‘ndx)
120 necom 2983 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (le‘ndx) ↔ (le‘ndx) ≠ (*𝑟‘ndx))
121120biimpi 215 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (le‘ndx) → (le‘ndx) ≠ (*𝑟‘ndx))
122121adantr 479 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) → (le‘ndx) ≠ (*𝑟‘ndx))
12332, 122ax-mp 5 . . . . . . . . . . 11 (le‘ndx) ≠ (*𝑟‘ndx)
124 necom 2983 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (dist‘ndx) ↔ (dist‘ndx) ≠ (*𝑟‘ndx))
125124biimpi 215 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (dist‘ndx) → (dist‘ndx) ≠ (*𝑟‘ndx))
126125adantr 479 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → (dist‘ndx) ≠ (*𝑟‘ndx))
12736, 126ax-mp 5 . . . . . . . . . . 11 (dist‘ndx) ≠ (*𝑟‘ndx)
128 disjtpsn 4723 . . . . . . . . . . 11 (((TopSet‘ndx) ≠ (*𝑟‘ndx) ∧ (le‘ndx) ≠ (*𝑟‘ndx) ∧ (dist‘ndx) ≠ (*𝑟‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
129119, 123, 127, 128mp3an 1457 . . . . . . . . . 10 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
130129ineqcomi 4203 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
131118, 130eqtri 2753 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
13219, 59ineq12i 4210 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)})
133 simpl3 1190 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → (*𝑟‘ndx) ≠ (UnifSet‘ndx))
13461, 133ax-mp 5 . . . . . . . . . 10 (*𝑟‘ndx) ≠ (UnifSet‘ndx)
135 disjsn2 4720 . . . . . . . . . 10 ((*𝑟‘ndx) ≠ (UnifSet‘ndx) → ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
136134, 135ax-mp 5 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
137132, 136eqtri 2753 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
138131, 137pm3.2i 469 . . . . . . 7 ((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
139 undisj2 4466 . . . . . . 7 (((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
140138, 139mpbi 229 . . . . . 6 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
141117, 140pm3.2i 469 . . . . 5 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
142 undisj1 4465 . . . . 5 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) ↔ ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
143141, 142mpbi 229 . . . 4 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
14477, 143eqtri 2753 . . 3 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
145 funun 6604 . . 3 (((Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∧ (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) → Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
14674, 144, 145mp2an 690 . 2 Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
147 dfcnfldOLD 21351 . . 3 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
148147funeqi 6579 . 2 (Fun ℂfld ↔ Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
149146, 148mpbir 230 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  cun 3944  cin 3945  c0 4324  {csn 4632  {ctp 4636  cop 4638   × cxp 5679  dom cdm 5681  ccom 5685  Fun wfun 6547  wf 6549  cfv 6553  cc 11152  cr 11153   + caddc 11157   · cmul 11159  cle 11295  cmin 11490  ccj 15096  abscabs 15234  ndxcnx 17190  Basecbs 17208  +gcplusg 17261  .rcmulr 17262  *𝑟cstv 17263  TopSetcts 17267  lecple 17268  distcds 17270  UnifSetcunif 17271   TosetRel ctsr 18585  MetOpencmopn 21325  metUnifcmetu 21326  fldccnfld 21335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232  ax-addf 11233  ax-mulf 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-sup 9481  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-rp 13024  df-seq 14017  df-exp 14077  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-slot 17179  df-ndx 17191  df-base 17209  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-ps 18586  df-tsr 18587  df-cnfld 21336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator