Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldunif Structured version   Visualization version   GIF version

Theorem cnfldunif 20556
 Description: The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldunif (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld)

Proof of Theorem cnfldunif
StepHypRef Expression
1 fvex 6674 . 2 (metUnif‘(abs ∘ − )) ∈ V
2 cnfldstr 20547 . . 3 fld Struct ⟨1, 13⟩
3 unifid 16678 . . 3 UnifSet = Slot (UnifSet‘ndx)
4 ssun2 4135 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} ⊆ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5 ssun2 4135 . . . . 5 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6 df-cnfld 20546 . . . . 5 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
75, 6sseqtrri 3990 . . . 4 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ⊆ ℂfld
84, 7sstri 3962 . . 3 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} ⊆ ℂfld
92, 3, 8strfv 16531 . 2 ((metUnif‘(abs ∘ − )) ∈ V → (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld))
101, 9ax-mp 5 1 (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2115  Vcvv 3480   ∪ cun 3917  {csn 4550  {ctp 4554  ⟨cop 4556   ∘ ccom 5546  ‘cfv 6343  ℂcc 10533  1c1 10536   + caddc 10538   · cmul 10540   ≤ cle 10674   − cmin 10868  3c3 11690  ;cdc 12095  ∗ccj 14455  abscabs 14593  ndxcnx 16480  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  *𝑟cstv 16567  TopSetcts 16571  lecple 16572  distcds 16574  UnifSetcunif 16575  MetOpencmopn 20535  metUnifcmetu 20536  ℂfldccnfld 20545 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-cnfld 20546 This theorem is referenced by:  cnflduss  23963
 Copyright terms: Public domain W3C validator