![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldds | Structured version Visualization version GIF version |
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldds | ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 15291 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
2 | subf 11469 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6741 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 689 | . . 3 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | cnex 11197 | . . . 4 ⊢ ℂ ∈ V | |
6 | 5, 5 | xpex 7744 | . . 3 ⊢ (ℂ × ℂ) ∈ V |
7 | reex 11207 | . . 3 ⊢ ℝ ∈ V | |
8 | fex2 7928 | . . 3 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V) | |
9 | 4, 6, 7, 8 | mp3an 1460 | . 2 ⊢ (abs ∘ − ) ∈ V |
10 | cnfldstr 21236 | . . 3 ⊢ ℂfld Struct ⟨1, ;13⟩ | |
11 | dsid 17338 | . . 3 ⊢ dist = Slot (dist‘ndx) | |
12 | snsstp3 4821 | . . . 4 ⊢ {⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} | |
13 | ssun1 4172 | . . . . 5 ⊢ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) | |
14 | ssun2 4173 | . . . . . 6 ⊢ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
15 | df-cnfld 21235 | . . . . . 6 ⊢ ℂfld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
16 | 14, 15 | sseqtrri 4019 | . . . . 5 ⊢ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ⊆ ℂfld |
17 | 13, 16 | sstri 3991 | . . . 4 ⊢ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ ℂfld |
18 | 12, 17 | sstri 3991 | . . 3 ⊢ {⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ ℂfld |
19 | 10, 11, 18 | strfv 17144 | . 2 ⊢ ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld)) |
20 | 9, 19 | ax-mp 5 | 1 ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 {csn 4628 {ctp 4632 ⟨cop 4634 × cxp 5674 ∘ ccom 5680 ⟶wf 6539 ‘cfv 6543 ℂcc 11114 ℝcr 11115 1c1 11117 + caddc 11119 · cmul 11121 ≤ cle 11256 − cmin 11451 3c3 12275 ;cdc 12684 ∗ccj 15050 abscabs 15188 ndxcnx 17133 Basecbs 17151 +gcplusg 17204 .rcmulr 17205 *𝑟cstv 17206 TopSetcts 17210 lecple 17211 distcds 17213 UnifSetcunif 17214 MetOpencmopn 21224 metUnifcmetu 21225 ℂfldccnfld 21234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-cnfld 21235 |
This theorem is referenced by: reds 21480 cnfldms 24613 cnfldnm 24616 cnngp 24617 cncms 25204 cnfldcusp 25206 qqhcn 33437 qqhucn 33438 cnrrext 33456 cnpwstotbnd 37132 repwsmet 37169 rrnequiv 37170 |
Copyright terms: Public domain | W3C validator |