MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldds Structured version   Visualization version   GIF version

Theorem cnfldds 20078
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldds (abs ∘ − ) = (dist‘ℂfld)

Proof of Theorem cnfldds
StepHypRef Expression
1 absf 14418 . . . 4 abs:ℂ⟶ℝ
2 subf 10574 . . . 4 − :(ℂ × ℂ)⟶ℂ
3 fco 6273 . . . 4 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
41, 2, 3mp2an 684 . . 3 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
5 cnex 10305 . . . 4 ℂ ∈ V
65, 5xpex 7196 . . 3 (ℂ × ℂ) ∈ V
7 reex 10315 . . 3 ℝ ∈ V
8 fex2 7356 . . 3 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V)
94, 6, 7, 8mp3an 1586 . 2 (abs ∘ − ) ∈ V
10 cnfldstr 20070 . . 3 fld Struct ⟨1, 13⟩
11 dsid 16378 . . 3 dist = Slot (dist‘ndx)
12 snsstp3 4537 . . . 4 {⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
13 ssun1 3974 . . . . 5 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
14 ssun2 3975 . . . . . 6 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
15 df-cnfld 20069 . . . . . 6 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
1614, 15sseqtr4i 3834 . . . . 5 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ⊆ ℂfld
1713, 16sstri 3807 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ ℂfld
1812, 17sstri 3807 . . 3 {⟨(dist‘ndx), (abs ∘ − )⟩} ⊆ ℂfld
1910, 11, 18strfv 16232 . 2 ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld))
209, 19ax-mp 5 1 (abs ∘ − ) = (dist‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  Vcvv 3385  cun 3767  {csn 4368  {ctp 4372  cop 4374   × cxp 5310  ccom 5316  wf 6097  cfv 6101  cc 10222  cr 10223  1c1 10225   + caddc 10227   · cmul 10229  cle 10364  cmin 10556  3c3 11369  cdc 11783  ccj 14177  abscabs 14315  ndxcnx 16181  Basecbs 16184  +gcplusg 16267  .rcmulr 16268  *𝑟cstv 16269  TopSetcts 16273  lecple 16274  distcds 16276  UnifSetcunif 16277  MetOpencmopn 20058  metUnifcmetu 20059  fldccnfld 20068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-rp 12075  df-fz 12581  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-plusg 16280  df-mulr 16281  df-starv 16282  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-cnfld 20069
This theorem is referenced by:  reds  20285  cnfldms  22907  cnfldnm  22910  cnngp  22911  cncms  23481  cnfldcusp  23483  qqhcn  30551  qqhucn  30552  cnrrext  30570  cnpwstotbnd  34083  repwsmet  34120  rrnequiv  34121
  Copyright terms: Public domain W3C validator