| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldds | Structured version Visualization version GIF version | ||
| Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21365. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldds | ⊢ (abs ∘ − ) = (dist‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf 15376 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
| 2 | subf 11510 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 3 | fco 6760 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
| 5 | cnex 11236 | . . . 4 ⊢ ℂ ∈ V | |
| 6 | 5, 5 | xpex 7773 | . . 3 ⊢ (ℂ × ℂ) ∈ V |
| 7 | reex 11246 | . . 3 ⊢ ℝ ∈ V | |
| 8 | fex2 7958 | . . 3 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V) | |
| 9 | 4, 6, 7, 8 | mp3an 1463 | . 2 ⊢ (abs ∘ − ) ∈ V |
| 10 | cnfldstr 21366 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 11 | dsid 17430 | . . 3 ⊢ dist = Slot (dist‘ndx) | |
| 12 | snsstp3 4818 | . . . 4 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} | |
| 13 | ssun1 4178 | . . . . 5 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
| 14 | ssun2 4179 | . . . . . 6 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 15 | df-cnfld 21365 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 16 | 14, 15 | sseqtrri 4033 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
| 17 | 13, 16 | sstri 3993 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
| 18 | 12, 17 | sstri 3993 | . . 3 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
| 19 | 10, 11, 18 | strfv 17240 | . 2 ⊢ ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld)) |
| 20 | 9, 19 | ax-mp 5 | 1 ⊢ (abs ∘ − ) = (dist‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 {csn 4626 {ctp 4630 〈cop 4632 × cxp 5683 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 ℝcr 11154 1c1 11156 + caddc 11158 · cmul 11160 ≤ cle 11296 − cmin 11492 3c3 12322 ;cdc 12733 ∗ccj 15135 abscabs 15273 ndxcnx 17230 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 *𝑟cstv 17299 TopSetcts 17303 lecple 17304 distcds 17306 UnifSetcunif 17307 MetOpencmopn 21354 metUnifcmetu 21355 ℂfldccnfld 21364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-cnfld 21365 |
| This theorem is referenced by: reds 21634 cnfldms 24796 cnfldnm 24799 cnngp 24800 cncms 25389 cnfldcusp 25391 qqhcn 33992 qqhucn 33993 cnrrext 34011 cnpwstotbnd 37804 repwsmet 37841 rrnequiv 37842 |
| Copyright terms: Public domain | W3C validator |