Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfldds | Structured version Visualization version GIF version |
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldds | ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 15030 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
2 | subf 11206 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6620 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | cnex 10936 | . . . 4 ⊢ ℂ ∈ V | |
6 | 5, 5 | xpex 7594 | . . 3 ⊢ (ℂ × ℂ) ∈ V |
7 | reex 10946 | . . 3 ⊢ ℝ ∈ V | |
8 | fex2 7767 | . . 3 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V) | |
9 | 4, 6, 7, 8 | mp3an 1459 | . 2 ⊢ (abs ∘ − ) ∈ V |
10 | cnfldstr 20580 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
11 | dsid 17077 | . . 3 ⊢ dist = Slot (dist‘ndx) | |
12 | snsstp3 4756 | . . . 4 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} | |
13 | ssun1 4110 | . . . . 5 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
14 | ssun2 4111 | . . . . . 6 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
15 | df-cnfld 20579 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
16 | 14, 15 | sseqtrri 3962 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
17 | 13, 16 | sstri 3934 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
18 | 12, 17 | sstri 3934 | . . 3 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
19 | 10, 11, 18 | strfv 16886 | . 2 ⊢ ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld)) |
20 | 9, 19 | ax-mp 5 | 1 ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∪ cun 3889 {csn 4566 {ctp 4570 〈cop 4572 × cxp 5586 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 ℂcc 10853 ℝcr 10854 1c1 10856 + caddc 10858 · cmul 10860 ≤ cle 10994 − cmin 11188 3c3 12012 ;cdc 12419 ∗ccj 14788 abscabs 14926 ndxcnx 16875 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 *𝑟cstv 16945 TopSetcts 16949 lecple 16950 distcds 16952 UnifSetcunif 16953 MetOpencmopn 20568 metUnifcmetu 20569 ℂfldccnfld 20578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-starv 16958 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-cnfld 20579 |
This theorem is referenced by: reds 20802 cnfldms 23920 cnfldnm 23923 cnngp 23924 cncms 24500 cnfldcusp 24502 qqhcn 31920 qqhucn 31921 cnrrext 31939 cnpwstotbnd 35934 repwsmet 35971 rrnequiv 35972 |
Copyright terms: Public domain | W3C validator |