| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldds | Structured version Visualization version GIF version | ||
| Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21314. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldds | ⊢ (abs ∘ − ) = (dist‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf 15354 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
| 2 | subf 11482 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 3 | fco 6729 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
| 5 | cnex 11208 | . . . 4 ⊢ ℂ ∈ V | |
| 6 | 5, 5 | xpex 7745 | . . 3 ⊢ (ℂ × ℂ) ∈ V |
| 7 | reex 11218 | . . 3 ⊢ ℝ ∈ V | |
| 8 | fex2 7930 | . . 3 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V) | |
| 9 | 4, 6, 7, 8 | mp3an 1463 | . 2 ⊢ (abs ∘ − ) ∈ V |
| 10 | cnfldstr 21315 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 11 | dsid 17398 | . . 3 ⊢ dist = Slot (dist‘ndx) | |
| 12 | snsstp3 4794 | . . . 4 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} | |
| 13 | ssun1 4153 | . . . . 5 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
| 14 | ssun2 4154 | . . . . . 6 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 15 | df-cnfld 21314 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 16 | 14, 15 | sseqtrri 4008 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
| 17 | 13, 16 | sstri 3968 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
| 18 | 12, 17 | sstri 3968 | . . 3 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
| 19 | 10, 11, 18 | strfv 17220 | . 2 ⊢ ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld)) |
| 20 | 9, 19 | ax-mp 5 | 1 ⊢ (abs ∘ − ) = (dist‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 {ctp 4605 〈cop 4607 × cxp 5652 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ℂcc 11125 ℝcr 11126 1c1 11128 + caddc 11130 · cmul 11132 ≤ cle 11268 − cmin 11464 3c3 12294 ;cdc 12706 ∗ccj 15113 abscabs 15251 ndxcnx 17210 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 *𝑟cstv 17271 TopSetcts 17275 lecple 17276 distcds 17278 UnifSetcunif 17279 MetOpencmopn 21303 metUnifcmetu 21304 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-cnfld 21314 |
| This theorem is referenced by: reds 21574 cnfldms 24712 cnfldnm 24715 cnngp 24716 cncms 25305 cnfldcusp 25307 qqhcn 33968 qqhucn 33969 cnrrext 33987 cnpwstotbnd 37767 repwsmet 37804 rrnequiv 37805 |
| Copyright terms: Public domain | W3C validator |