MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldstr Structured version   Visualization version   GIF version

Theorem cnfldstr 20067
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldstr fld Struct ⟨1, 13⟩

Proof of Theorem cnfldstr
StepHypRef Expression
1 df-cnfld 20066 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 eqid 2797 . . . 4 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32srngfn 16326 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) Struct ⟨1, 4⟩
4 9nn 11413 . . . . 5 9 ∈ ℕ
5 tsetndx 16358 . . . . 5 (TopSet‘ndx) = 9
6 9lt10 11912 . . . . 5 9 < 10
7 10nn 11795 . . . . 5 10 ∈ ℕ
8 plendx 16365 . . . . 5 (le‘ndx) = 10
9 1nn0 11594 . . . . . 6 1 ∈ ℕ0
10 0nn0 11593 . . . . . 6 0 ∈ ℕ0
11 2nn 11382 . . . . . 6 2 ∈ ℕ
12 2pos 11419 . . . . . 6 0 < 2
139, 10, 11, 12declt 11808 . . . . 5 10 < 12
149, 11decnncl 11800 . . . . 5 12 ∈ ℕ
15 dsndx 16374 . . . . 5 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 16293 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} Struct ⟨9, 12⟩
17 3nn 11388 . . . . . 6 3 ∈ ℕ
189, 17decnncl 11800 . . . . 5 13 ∈ ℕ
19 unifndx 16376 . . . . 5 (UnifSet‘ndx) = 13
2018, 19strle1 16291 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} Struct ⟨13, 13⟩
21 2nn0 11595 . . . . 5 2 ∈ ℕ0
22 2lt3 11488 . . . . 5 2 < 3
239, 21, 17, 22declt 11808 . . . 4 12 < 13
2416, 20, 23strleun 16290 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) Struct ⟨9, 13⟩
25 4lt9 11519 . . 3 4 < 9
263, 24, 25strleun 16290 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) Struct ⟨1, 13⟩
271, 26eqbrtri 4862 1 fld Struct ⟨1, 13⟩
Colors of variables: wff setvar class
Syntax hints:  cun 3765  {csn 4366  {ctp 4370  cop 4372   class class class wbr 4841  ccom 5314  cfv 6099  cc 10220  0cc0 10222  1c1 10223   + caddc 10225   · cmul 10227  cle 10362  cmin 10554  2c2 11364  3c3 11365  4c4 11366  9c9 11371  cdc 11779  ccj 14174  abscabs 14312   Struct cstr 16177  ndxcnx 16178  Basecbs 16181  +gcplusg 16264  .rcmulr 16265  *𝑟cstv 16266  TopSetcts 16270  lecple 16271  distcds 16273  UnifSetcunif 16274  MetOpencmopn 20055  metUnifcmetu 20056  fldccnfld 20065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-mulr 16278  df-starv 16279  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-cnfld 20066
This theorem is referenced by:  cnfldex  20068  cnfldbas  20069  cnfldadd  20070  cnfldmul  20071  cnfldcj  20072  cnfldtset  20073  cnfldle  20074  cnfldds  20075  cnfldunif  20076  cnfldfunALT  20078  cffldtocusgr  26689
  Copyright terms: Public domain W3C validator