| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldstr | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21296. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldstr | ⊢ ℂfld Struct 〈1, ;13〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21296 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | eqid 2733 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 3 | 2 | srngstr 17217 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
| 4 | 9nn 12232 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17260 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 9lt10 12727 | . . . . 5 ⊢ 9 < ;10 | |
| 7 | 10nn 12612 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17274 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12406 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12405 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 11 | 2nn 12207 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 12 | 2pos 12237 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 9, 10, 11, 12 | declt 12624 | . . . . 5 ⊢ ;10 < ;12 |
| 14 | 9, 11 | decnncl 12616 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 15 | dsndx 17293 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17075 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
| 17 | 3nn 12213 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 18 | 9, 17 | decnncl 12616 | . . . . 5 ⊢ ;13 ∈ ℕ |
| 19 | unifndx 17303 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 20 | 18, 19 | strle1 17073 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
| 21 | 2nn0 12407 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 22 | 2lt3 12301 | . . . . 5 ⊢ 2 < 3 | |
| 23 | 9, 21, 17, 22 | declt 12624 | . . . 4 ⊢ ;12 < ;13 |
| 24 | 16, 20, 23 | strleun 17072 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
| 25 | 4lt9 12332 | . . 3 ⊢ 4 < 9 | |
| 26 | 3, 24, 25 | strleun 17072 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
| 27 | 1, 26 | eqbrtri 5116 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3896 {csn 4577 {ctp 4581 〈cop 4583 class class class wbr 5095 ∘ ccom 5625 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ℂcc 11013 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 ≤ cle 11156 − cmin 11353 2c2 12189 3c3 12190 4c4 12191 9c9 12196 ;cdc 12596 ∗ccj 15007 abscabs 15145 Struct cstr 17061 ndxcnx 17108 Basecbs 17124 +gcplusg 17165 .rcmulr 17166 *𝑟cstv 17167 TopSetcts 17171 lecple 17172 distcds 17174 UnifSetcunif 17175 MetOpencmopn 21285 metUnifcmetu 21286 ℂfldccnfld 21295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-starv 17180 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-cnfld 21296 |
| This theorem is referenced by: cnfldbas 21299 mpocnfldadd 21300 mpocnfldmul 21302 cnfldcj 21304 cnfldtset 21305 cnfldle 21306 cnfldds 21307 cnfldunif 21308 cnfldfun 21309 cffldtocusgr 29429 cffldtocusgrOLD 29430 |
| Copyright terms: Public domain | W3C validator |