MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldstr Structured version   Visualization version   GIF version

Theorem cnfldstr 21281
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldstr fld Struct ⟨1, 13⟩

Proof of Theorem cnfldstr
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 21280 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 eqid 2729 . . . 4 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32srngstr 17231 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) Struct ⟨1, 4⟩
4 9nn 12244 . . . . 5 9 ∈ ℕ
5 tsetndx 17274 . . . . 5 (TopSet‘ndx) = 9
6 9lt10 12740 . . . . 5 9 < 10
7 10nn 12625 . . . . 5 10 ∈ ℕ
8 plendx 17288 . . . . 5 (le‘ndx) = 10
9 1nn0 12418 . . . . . 6 1 ∈ ℕ0
10 0nn0 12417 . . . . . 6 0 ∈ ℕ0
11 2nn 12219 . . . . . 6 2 ∈ ℕ
12 2pos 12249 . . . . . 6 0 < 2
139, 10, 11, 12declt 12637 . . . . 5 10 < 12
149, 11decnncl 12629 . . . . 5 12 ∈ ℕ
15 dsndx 17307 . . . . 5 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 17089 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} Struct ⟨9, 12⟩
17 3nn 12225 . . . . . 6 3 ∈ ℕ
189, 17decnncl 12629 . . . . 5 13 ∈ ℕ
19 unifndx 17317 . . . . 5 (UnifSet‘ndx) = 13
2018, 19strle1 17087 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} Struct ⟨13, 13⟩
21 2nn0 12419 . . . . 5 2 ∈ ℕ0
22 2lt3 12313 . . . . 5 2 < 3
239, 21, 17, 22declt 12637 . . . 4 12 < 13
2416, 20, 23strleun 17086 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) Struct ⟨9, 13⟩
25 4lt9 12344 . . 3 4 < 9
263, 24, 25strleun 17086 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) Struct ⟨1, 13⟩
271, 26eqbrtri 5116 1 fld Struct ⟨1, 13⟩
Colors of variables: wff setvar class
Syntax hints:  cun 3903  {csn 4579  {ctp 4583  cop 4585   class class class wbr 5095  ccom 5627  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365  2c2 12201  3c3 12202  4c4 12203  9c9 12208  cdc 12609  ccj 15021  abscabs 15159   Struct cstr 17075  ndxcnx 17122  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  *𝑟cstv 17181  TopSetcts 17185  lecple 17186  distcds 17188  UnifSetcunif 17189  MetOpencmopn 21269  metUnifcmetu 21270  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-cnfld 21280
This theorem is referenced by:  cnfldbas  21283  mpocnfldadd  21284  mpocnfldmul  21286  cnfldcj  21288  cnfldtset  21289  cnfldle  21290  cnfldds  21291  cnfldunif  21292  cnfldfun  21293  cffldtocusgr  29410  cffldtocusgrOLD  29411
  Copyright terms: Public domain W3C validator