MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldstr Structured version   Visualization version   GIF version

Theorem cnfldstr 20542
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldstr fld Struct ⟨1, 13⟩

Proof of Theorem cnfldstr
StepHypRef Expression
1 df-cnfld 20541 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 eqid 2824 . . . 4 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32srngstr 16625 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) Struct ⟨1, 4⟩
4 9nn 11730 . . . . 5 9 ∈ ℕ
5 tsetndx 16657 . . . . 5 (TopSet‘ndx) = 9
6 9lt10 12224 . . . . 5 9 < 10
7 10nn 12109 . . . . 5 10 ∈ ℕ
8 plendx 16664 . . . . 5 (le‘ndx) = 10
9 1nn0 11908 . . . . . 6 1 ∈ ℕ0
10 0nn0 11907 . . . . . 6 0 ∈ ℕ0
11 2nn 11705 . . . . . 6 2 ∈ ℕ
12 2pos 11735 . . . . . 6 0 < 2
139, 10, 11, 12declt 12121 . . . . 5 10 < 12
149, 11decnncl 12113 . . . . 5 12 ∈ ℕ
15 dsndx 16673 . . . . 5 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 16592 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} Struct ⟨9, 12⟩
17 3nn 11711 . . . . . 6 3 ∈ ℕ
189, 17decnncl 12113 . . . . 5 13 ∈ ℕ
19 unifndx 16675 . . . . 5 (UnifSet‘ndx) = 13
2018, 19strle1 16590 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} Struct ⟨13, 13⟩
21 2nn0 11909 . . . . 5 2 ∈ ℕ0
22 2lt3 11804 . . . . 5 2 < 3
239, 21, 17, 22declt 12121 . . . 4 12 < 13
2416, 20, 23strleun 16589 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) Struct ⟨9, 13⟩
25 4lt9 11835 . . 3 4 < 9
263, 24, 25strleun 16589 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) Struct ⟨1, 13⟩
271, 26eqbrtri 5074 1 fld Struct ⟨1, 13⟩
Colors of variables: wff setvar class
Syntax hints:  cun 3917  {csn 4550  {ctp 4554  cop 4556   class class class wbr 5053  ccom 5547  cfv 6344  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cle 10670  cmin 10864  2c2 11687  3c3 11688  4c4 11689  9c9 11694  cdc 12093  ccj 14453  abscabs 14591   Struct cstr 16477  ndxcnx 16478  Basecbs 16481  +gcplusg 16563  .rcmulr 16564  *𝑟cstv 16565  TopSetcts 16569  lecple 16570  distcds 16572  UnifSetcunif 16573  MetOpencmopn 20530  metUnifcmetu 20531  fldccnfld 20540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-fz 12893  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-plusg 16576  df-mulr 16577  df-starv 16578  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-cnfld 20541
This theorem is referenced by:  cnfldex  20543  cnfldbas  20544  cnfldadd  20545  cnfldmul  20546  cnfldcj  20547  cnfldtset  20548  cnfldle  20549  cnfldds  20550  cnfldunif  20551  cnfldfunALT  20553  cffldtocusgr  27235
  Copyright terms: Public domain W3C validator