| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldstr | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21293. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldstr | ⊢ ℂfld Struct 〈1, ;13〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21293 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | eqid 2731 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 3 | 2 | srngstr 17213 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
| 4 | 9nn 12223 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17256 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 9lt10 12719 | . . . . 5 ⊢ 9 < ;10 | |
| 7 | 10nn 12604 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17270 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12397 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12396 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 11 | 2nn 12198 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 12 | 2pos 12228 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 9, 10, 11, 12 | declt 12616 | . . . . 5 ⊢ ;10 < ;12 |
| 14 | 9, 11 | decnncl 12608 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 15 | dsndx 17289 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17071 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
| 17 | 3nn 12204 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 18 | 9, 17 | decnncl 12608 | . . . . 5 ⊢ ;13 ∈ ℕ |
| 19 | unifndx 17299 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 20 | 18, 19 | strle1 17069 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
| 21 | 2nn0 12398 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 22 | 2lt3 12292 | . . . . 5 ⊢ 2 < 3 | |
| 23 | 9, 21, 17, 22 | declt 12616 | . . . 4 ⊢ ;12 < ;13 |
| 24 | 16, 20, 23 | strleun 17068 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
| 25 | 4lt9 12323 | . . 3 ⊢ 4 < 9 | |
| 26 | 3, 24, 25 | strleun 17068 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
| 27 | 1, 26 | eqbrtri 5112 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3900 {csn 4576 {ctp 4580 〈cop 4582 class class class wbr 5091 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 2c2 12180 3c3 12181 4c4 12182 9c9 12187 ;cdc 12588 ∗ccj 15003 abscabs 15141 Struct cstr 17057 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 *𝑟cstv 17163 TopSetcts 17167 lecple 17168 distcds 17170 UnifSetcunif 17171 MetOpencmopn 21282 metUnifcmetu 21283 ℂfldccnfld 21292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-cnfld 21293 |
| This theorem is referenced by: cnfldbas 21296 mpocnfldadd 21297 mpocnfldmul 21299 cnfldcj 21301 cnfldtset 21302 cnfldle 21303 cnfldds 21304 cnfldunif 21305 cnfldfun 21306 cffldtocusgr 29426 cffldtocusgrOLD 29427 |
| Copyright terms: Public domain | W3C validator |