| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldstr | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21272. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldstr | ⊢ ℂfld Struct 〈1, ;13〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21272 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | eqid 2730 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 3 | 2 | srngstr 17279 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
| 4 | 9nn 12291 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17322 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 9lt10 12787 | . . . . 5 ⊢ 9 < ;10 | |
| 7 | 10nn 12672 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17336 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12465 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12464 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 11 | 2nn 12266 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 12 | 2pos 12296 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 9, 10, 11, 12 | declt 12684 | . . . . 5 ⊢ ;10 < ;12 |
| 14 | 9, 11 | decnncl 12676 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 15 | dsndx 17355 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17137 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
| 17 | 3nn 12272 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 18 | 9, 17 | decnncl 12676 | . . . . 5 ⊢ ;13 ∈ ℕ |
| 19 | unifndx 17365 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 20 | 18, 19 | strle1 17135 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
| 21 | 2nn0 12466 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 22 | 2lt3 12360 | . . . . 5 ⊢ 2 < 3 | |
| 23 | 9, 21, 17, 22 | declt 12684 | . . . 4 ⊢ ;12 < ;13 |
| 24 | 16, 20, 23 | strleun 17134 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
| 25 | 4lt9 12391 | . . 3 ⊢ 4 < 9 | |
| 26 | 3, 24, 25 | strleun 17134 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
| 27 | 1, 26 | eqbrtri 5131 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 {csn 4592 {ctp 4596 〈cop 4598 class class class wbr 5110 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ≤ cle 11216 − cmin 11412 2c2 12248 3c3 12249 4c4 12250 9c9 12255 ;cdc 12656 ∗ccj 15069 abscabs 15207 Struct cstr 17123 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 *𝑟cstv 17229 TopSetcts 17233 lecple 17234 distcds 17236 UnifSetcunif 17237 MetOpencmopn 21261 metUnifcmetu 21262 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-cnfld 21272 |
| This theorem is referenced by: cnfldbas 21275 mpocnfldadd 21276 mpocnfldmul 21278 cnfldcj 21280 cnfldtset 21281 cnfldle 21282 cnfldds 21283 cnfldunif 21284 cnfldfun 21285 cffldtocusgr 29381 cffldtocusgrOLD 29382 |
| Copyright terms: Public domain | W3C validator |