| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldstr | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldstr | ⊢ ℂfld Struct 〈1, ;13〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21280 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | eqid 2729 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 3 | 2 | srngstr 17231 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
| 4 | 9nn 12244 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17274 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 9lt10 12740 | . . . . 5 ⊢ 9 < ;10 | |
| 7 | 10nn 12625 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17288 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12418 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 11 | 2nn 12219 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 12 | 2pos 12249 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 9, 10, 11, 12 | declt 12637 | . . . . 5 ⊢ ;10 < ;12 |
| 14 | 9, 11 | decnncl 12629 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 15 | dsndx 17307 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17089 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
| 17 | 3nn 12225 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 18 | 9, 17 | decnncl 12629 | . . . . 5 ⊢ ;13 ∈ ℕ |
| 19 | unifndx 17317 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 20 | 18, 19 | strle1 17087 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
| 21 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 22 | 2lt3 12313 | . . . . 5 ⊢ 2 < 3 | |
| 23 | 9, 21, 17, 22 | declt 12637 | . . . 4 ⊢ ;12 < ;13 |
| 24 | 16, 20, 23 | strleun 17086 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
| 25 | 4lt9 12344 | . . 3 ⊢ 4 < 9 | |
| 26 | 3, 24, 25 | strleun 17086 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
| 27 | 1, 26 | eqbrtri 5116 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3903 {csn 4579 {ctp 4583 〈cop 4585 class class class wbr 5095 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 − cmin 11365 2c2 12201 3c3 12202 4c4 12203 9c9 12208 ;cdc 12609 ∗ccj 15021 abscabs 15159 Struct cstr 17075 ndxcnx 17122 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 *𝑟cstv 17181 TopSetcts 17185 lecple 17186 distcds 17188 UnifSetcunif 17189 MetOpencmopn 21269 metUnifcmetu 21270 ℂfldccnfld 21279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-cnfld 21280 |
| This theorem is referenced by: cnfldbas 21283 mpocnfldadd 21284 mpocnfldmul 21286 cnfldcj 21288 cnfldtset 21289 cnfldle 21290 cnfldds 21291 cnfldunif 21292 cnfldfun 21293 cffldtocusgr 29410 cffldtocusgrOLD 29411 |
| Copyright terms: Public domain | W3C validator |