Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfldstr | Structured version Visualization version GIF version |
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldstr | ⊢ ℂfld Struct 〈1, ;13〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnfld 20579 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
2 | eqid 2739 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
3 | 2 | srngstr 17000 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
4 | 9nn 12054 | . . . . 5 ⊢ 9 ∈ ℕ | |
5 | tsetndx 17043 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
6 | 9lt10 12550 | . . . . 5 ⊢ 9 < ;10 | |
7 | 10nn 12435 | . . . . 5 ⊢ ;10 ∈ ℕ | |
8 | plendx 17057 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
9 | 1nn0 12232 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
10 | 0nn0 12231 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
11 | 2nn 12029 | . . . . . 6 ⊢ 2 ∈ ℕ | |
12 | 2pos 12059 | . . . . . 6 ⊢ 0 < 2 | |
13 | 9, 10, 11, 12 | declt 12447 | . . . . 5 ⊢ ;10 < ;12 |
14 | 9, 11 | decnncl 12439 | . . . . 5 ⊢ ;12 ∈ ℕ |
15 | dsndx 17076 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 16842 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
17 | 3nn 12035 | . . . . . 6 ⊢ 3 ∈ ℕ | |
18 | 9, 17 | decnncl 12439 | . . . . 5 ⊢ ;13 ∈ ℕ |
19 | unifndx 17086 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
20 | 18, 19 | strle1 16840 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
21 | 2nn0 12233 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
22 | 2lt3 12128 | . . . . 5 ⊢ 2 < 3 | |
23 | 9, 21, 17, 22 | declt 12447 | . . . 4 ⊢ ;12 < ;13 |
24 | 16, 20, 23 | strleun 16839 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
25 | 4lt9 12159 | . . 3 ⊢ 4 < 9 | |
26 | 3, 24, 25 | strleun 16839 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
27 | 1, 26 | eqbrtri 5099 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3889 {csn 4566 {ctp 4570 〈cop 4572 class class class wbr 5078 ∘ ccom 5592 ‘cfv 6430 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 ≤ cle 10994 − cmin 11188 2c2 12011 3c3 12012 4c4 12013 9c9 12018 ;cdc 12419 ∗ccj 14788 abscabs 14926 Struct cstr 16828 ndxcnx 16875 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 *𝑟cstv 16945 TopSetcts 16949 lecple 16950 distcds 16952 UnifSetcunif 16953 MetOpencmopn 20568 metUnifcmetu 20569 ℂfldccnfld 20578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-starv 16958 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-cnfld 20579 |
This theorem is referenced by: cnfldex 20581 cnfldbas 20582 cnfldadd 20583 cnfldmul 20584 cnfldcj 20585 cnfldtset 20586 cnfldle 20587 cnfldds 20588 cnfldunif 20589 cnfldfunALT 20592 cffldtocusgr 27795 |
Copyright terms: Public domain | W3C validator |