MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldcj Structured version   Visualization version   GIF version

Theorem cnfldcj 20113
Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldcj ∗ = (*𝑟‘ℂfld)

Proof of Theorem cnfldcj
StepHypRef Expression
1 cjf 14221 . . 3 ∗:ℂ⟶ℂ
2 cnex 10333 . . 3 ℂ ∈ V
3 fex2 7383 . . 3 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V ∧ ℂ ∈ V) → ∗ ∈ V)
41, 2, 2, 3mp3an 1591 . 2 ∗ ∈ V
5 cnfldstr 20108 . . 3 fld Struct ⟨1, 13⟩
6 starvid 16364 . . 3 *𝑟 = Slot (*𝑟‘ndx)
7 ssun2 4004 . . . 4 {⟨(*𝑟‘ndx), ∗⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
8 ssun1 4003 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
9 df-cnfld 20107 . . . . 5 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
108, 9sseqtr4i 3863 . . . 4 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld
117, 10sstri 3836 . . 3 {⟨(*𝑟‘ndx), ∗⟩} ⊆ ℂfld
125, 6, 11strfv 16270 . 2 (∗ ∈ V → ∗ = (*𝑟‘ℂfld))
134, 12ax-mp 5 1 ∗ = (*𝑟‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  Vcvv 3414  cun 3796  {csn 4397  {ctp 4401  cop 4403  ccom 5346  wf 6119  cfv 6123  cc 10250  1c1 10253   + caddc 10255   · cmul 10257  cle 10392  cmin 10585  3c3 11407  cdc 11821  ccj 14213  abscabs 14351  ndxcnx 16219  Basecbs 16222  +gcplusg 16305  .rcmulr 16306  *𝑟cstv 16307  TopSetcts 16311  lecple 16312  distcds 16314  UnifSetcunif 16315  MetOpencmopn 20096  metUnifcmetu 20097  fldccnfld 20106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-cj 14216  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-mulr 16319  df-starv 16320  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-cnfld 20107
This theorem is referenced by:  cnsrng  20140  refldcj  20327  clmcj  23245  cphcjcl  23352  ipcau2  23402
  Copyright terms: Public domain W3C validator