MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldex Structured version   Visualization version   GIF version

Theorem cnfldex 21367
Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5365. (Revised by GG, 16-Mar-2025.)
Assertion
Ref Expression
cnfldex fld ∈ V

Proof of Theorem cnfldex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 21365 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 tpex 7766 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∈ V
3 snex 5436 . . . 4 {⟨(*𝑟‘ndx), ∗⟩} ∈ V
42, 3unex 7764 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∈ V
5 tpex 7766 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∈ V
6 snex 5436 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} ∈ V
75, 6unex 7764 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∈ V
84, 7unex 7764 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∈ V
91, 8eqeltri 2837 1 fld ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3480  cun 3949  {csn 4626  {ctp 4630  cop 4632  ccom 5689  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  ccj 15135  abscabs 15273  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  *𝑟cstv 17299  TopSetcts 17303  lecple 17304  distcds 17306  UnifSetcunif 17307  MetOpencmopn 21354  metUnifcmetu 21355  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-sn 4627  df-pr 4629  df-tp 4631  df-uni 4908  df-cnfld 21365
This theorem is referenced by:  regsumfsum  21453  rge0srg  21456  cnlmodlem3  25171  cnstrcvs  25174  cncvs  25178  cnncvsmulassdemo  25198  gsumzrsum  33062  xrge0iifmhm  33938  xrge0pluscn  33939  xrge0tmd  33944  cnzh  33969  esumpfinvallem  34075  aacllem  49320
  Copyright terms: Public domain W3C validator