MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldex Structured version   Visualization version   GIF version

Theorem cnfldex 21299
Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5315. (Revised by GG, 16-Mar-2025.)
Assertion
Ref Expression
cnfldex fld ∈ V

Proof of Theorem cnfldex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 21297 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 tpex 7702 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∈ V
3 snex 5386 . . . 4 {⟨(*𝑟‘ndx), ∗⟩} ∈ V
42, 3unex 7700 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∈ V
5 tpex 7702 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∈ V
6 snex 5386 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} ∈ V
75, 6unex 7700 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∈ V
84, 7unex 7700 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∈ V
91, 8eqeltri 2824 1 fld ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  cun 3909  {csn 4585  {ctp 4589  cop 4591  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  cc 11042   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  ccj 15038  abscabs 15176  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  *𝑟cstv 17198  TopSetcts 17202  lecple 17203  distcds 17205  UnifSetcunif 17206  MetOpencmopn 21286  metUnifcmetu 21287  fldccnfld 21296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-sn 4586  df-pr 4588  df-tp 4590  df-uni 4868  df-cnfld 21297
This theorem is referenced by:  regsumfsum  21377  rge0srg  21380  cnlmodlem3  25071  cnstrcvs  25074  cncvs  25078  cnncvsmulassdemo  25097  gsumzrsum  33042  xrge0iifmhm  33922  xrge0pluscn  33923  xrge0tmd  33928  cnzh  33951  esumpfinvallem  34057  aacllem  49783
  Copyright terms: Public domain W3C validator