| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldex | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5340. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldex | ⊢ ℂfld ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21321 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | tpex 7745 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∈ V | |
| 3 | snex 5411 | . . . 4 ⊢ {〈(*𝑟‘ndx), ∗〉} ∈ V | |
| 4 | 2, 3 | unex 7743 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∈ V |
| 5 | tpex 7745 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∈ V | |
| 6 | snex 5411 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} ∈ V | |
| 7 | 5, 6 | unex 7743 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ∈ V |
| 8 | 4, 7 | unex 7743 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ∈ V |
| 9 | 1, 8 | eqeltri 2831 | 1 ⊢ ℂfld ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 {ctp 4610 〈cop 4612 ∘ ccom 5663 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ℂcc 11132 + caddc 11137 · cmul 11139 ≤ cle 11275 − cmin 11471 ∗ccj 15120 abscabs 15258 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 *𝑟cstv 17278 TopSetcts 17282 lecple 17283 distcds 17285 UnifSetcunif 17286 MetOpencmopn 21310 metUnifcmetu 21311 ℂfldccnfld 21320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-tp 4611 df-uni 4889 df-cnfld 21321 |
| This theorem is referenced by: regsumfsum 21408 rge0srg 21411 cnlmodlem3 25094 cnstrcvs 25097 cncvs 25101 cnncvsmulassdemo 25121 gsumzrsum 33058 xrge0iifmhm 33975 xrge0pluscn 33976 xrge0tmd 33981 cnzh 34004 esumpfinvallem 34110 aacllem 49632 |
| Copyright terms: Public domain | W3C validator |