![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldex | Structured version Visualization version GIF version |
Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5367. (Revised by GG, 16-Mar-2025.) |
Ref | Expression |
---|---|
cnfldex | ⊢ ℂfld ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnfld 21285 | . 2 ⊢ ℂfld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
2 | tpex 7753 | . . . 4 ⊢ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∈ V | |
3 | snex 5435 | . . . 4 ⊢ {⟨(*𝑟‘ndx), ∗⟩} ∈ V | |
4 | 2, 3 | unex 7752 | . . 3 ⊢ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∈ V |
5 | tpex 7753 | . . . 4 ⊢ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∈ V | |
6 | snex 5435 | . . . 4 ⊢ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} ∈ V | |
7 | 5, 6 | unex 7752 | . . 3 ⊢ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∈ V |
8 | 4, 7 | unex 7752 | . 2 ⊢ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∈ V |
9 | 1, 8 | eqeltri 2824 | 1 ⊢ ℂfld ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3471 ∪ cun 3945 {csn 4630 {ctp 4634 ⟨cop 4636 ∘ ccom 5684 ‘cfv 6551 (class class class)co 7424 ∈ cmpo 7426 ℂcc 11142 + caddc 11147 · cmul 11149 ≤ cle 11285 − cmin 11480 ∗ccj 15081 abscabs 15219 ndxcnx 17167 Basecbs 17185 +gcplusg 17238 .rcmulr 17239 *𝑟cstv 17240 TopSetcts 17244 lecple 17245 distcds 17247 UnifSetcunif 17248 MetOpencmopn 21274 metUnifcmetu 21275 ℂfldccnfld 21284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-sn 4631 df-pr 4633 df-tp 4635 df-uni 4911 df-cnfld 21285 |
This theorem is referenced by: regsumfsum 21373 rge0srg 21376 cnlmodlem3 25083 cnstrcvs 25086 cncvs 25090 cnncvsmulassdemo 25110 xrge0iifmhm 33545 xrge0pluscn 33546 xrge0tmd 33551 cnzh 33576 esumpfinvallem 33698 aacllem 48285 |
Copyright terms: Public domain | W3C validator |