| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldex | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5323. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldex | ⊢ ℂfld ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21272 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | tpex 7725 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∈ V | |
| 3 | snex 5394 | . . . 4 ⊢ {〈(*𝑟‘ndx), ∗〉} ∈ V | |
| 4 | 2, 3 | unex 7723 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∈ V |
| 5 | tpex 7725 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∈ V | |
| 6 | snex 5394 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} ∈ V | |
| 7 | 5, 6 | unex 7723 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ∈ V |
| 8 | 4, 7 | unex 7723 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ∈ V |
| 9 | 1, 8 | eqeltri 2825 | 1 ⊢ ℂfld ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 {ctp 4596 〈cop 4598 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 + caddc 11078 · cmul 11080 ≤ cle 11216 − cmin 11412 ∗ccj 15069 abscabs 15207 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 *𝑟cstv 17229 TopSetcts 17233 lecple 17234 distcds 17236 UnifSetcunif 17237 MetOpencmopn 21261 metUnifcmetu 21262 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-tp 4597 df-uni 4875 df-cnfld 21272 |
| This theorem is referenced by: regsumfsum 21359 rge0srg 21362 cnlmodlem3 25045 cnstrcvs 25048 cncvs 25052 cnncvsmulassdemo 25071 gsumzrsum 33006 xrge0iifmhm 33936 xrge0pluscn 33937 xrge0tmd 33942 cnzh 33965 esumpfinvallem 34071 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |