| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldex | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5315. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldex | ⊢ ℂfld ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 21297 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | tpex 7702 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∈ V | |
| 3 | snex 5386 | . . . 4 ⊢ {〈(*𝑟‘ndx), ∗〉} ∈ V | |
| 4 | 2, 3 | unex 7700 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∈ V |
| 5 | tpex 7702 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∈ V | |
| 6 | snex 5386 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} ∈ V | |
| 7 | 5, 6 | unex 7700 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ∈ V |
| 8 | 4, 7 | unex 7700 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ∈ V |
| 9 | 1, 8 | eqeltri 2824 | 1 ⊢ ℂfld ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 {csn 4585 {ctp 4589 〈cop 4591 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 + caddc 11047 · cmul 11049 ≤ cle 11185 − cmin 11381 ∗ccj 15038 abscabs 15176 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 *𝑟cstv 17198 TopSetcts 17202 lecple 17203 distcds 17205 UnifSetcunif 17206 MetOpencmopn 21286 metUnifcmetu 21287 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-tp 4590 df-uni 4868 df-cnfld 21297 |
| This theorem is referenced by: regsumfsum 21377 rge0srg 21380 cnlmodlem3 25071 cnstrcvs 25074 cncvs 25078 cnncvsmulassdemo 25097 gsumzrsum 33042 xrge0iifmhm 33922 xrge0pluscn 33923 xrge0tmd 33928 cnzh 33951 esumpfinvallem 34057 aacllem 49783 |
| Copyright terms: Public domain | W3C validator |